1. Phương trình bậc hai một ẩn
Phương trình dạng \(a{x^2} + bx + c = 0\) với a, b, c là ba số đã cho và \(a \ne 0\), được gọi là phương trình bậc hai một ẩn (ẩn số là x) hay còn nói gọn là phương trình bậc hai.
𓆏 Xem chi tiết
Phân tích vế trái của các phương trình sau thành nhân tử rồi giải các phương trình đó:
a) 2x – x2 = 0;
b) \({x^2} - 6x + 9 = \frac{1}{2}\)
ဣ Xem cཧhi tiết
Biến đổi phương trình tổng quát ax2 + bx + c = 0 (a\( \ne \)0) theo các bước tương tự ví dụ 3, ta có:
\(\begin{array}{l}a{x^2} + bx + c = 0\\a{x^2} + bx = - c\\{x^2} + \frac{b}{a}x = \frac{{ - c}}{a}\\{x^2} + 2.x.\frac{b}{{2a}} + {\left( {\frac{b}{{2a}}} \right)^2} = \frac{{ - c}}{a} + {\left( {\frac{b}{{2a}}} \right)^2}\\{\left( {x + \frac{b}{{2a}}} \right)^2} = \frac{{{b^2} - 4ac}}{{4{a^2}}}.\end{array}\)
Đặt \(\Delta = {b^2} - 4ac\) và gọi là biệt thức của phương trình (\(\Delta \) là một
꧋ Xem chi t💃iết
Dùng máy tính cầm tay tính nghiệm (nếu có) của các phương trình sau (làm tròn kết quả đến hàng phần trăm):
a) \(11{x^2} + 4x - 189 = 0\)
b) \(2{x^2} - 8\sqrt 2 x + 16 = 0\)
c) \(\sqrt 2 {x^2} - \sqrt 3 x + 1 = 0\)
🥂 Xem chi tiết 𓄧
Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số a, b, c:
a) \({x^2} - x = 3x + 1\)
b) \(3{x^2} - 4x = \sqrt 2 {x^2} - 2\)
c) \({\left( {x + 1} \right)^2} = 2(x - 1)\)
d) \({x^2} - m = 2(m + 1)x\), m là một hằng số.
🌃 ✃ Xem chi tiết
Không giải các phương trình, hãy xác định số nghiệm của mỗi phương trình sau:
a) \(6{x^2} - 2x + 9 = 0\)
b) \(3{x^2} - 2\sqrt {15} x + 5 = 0\)
c) \(\frac{1}{3}{y^2} - 5y + \frac{3}{2} = 0\)
d) \(2,3{t^2} + 1,15t - 6,4 = 0\)
Xem chi tiết ♍