Một cặp gồm hai phương trình bậc nhất hai ẩn \(ax + by = c\) và \(a'x + b'y = c'\) được gọi là một hệ hai phương trình bậc nhất hai ẩn.
Ta thường viết hệ phương trình đó dưới dạng: \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\)Mỗi cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) nếu nó đồng thời là nghiệm🔯 của hai phương trình của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).
Lưu ý: Mỗi nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\) chính là một nghiệm chung của hai phươཧng trình của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\ꦦ,\).
+ Nếu \(a{x_0} + b{y_0} \ne c\) và \(a'{x_0} + b'{y_0} \ne c'\) thì \(\left( {{x_0};{y_0}} \right)\) không là nghiệm của hệ \(\left☂\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).
+ Nếu \(a{x_0} + b{y_0} = c\) và \(a'{x_0} + b'{y_0} \ne c'\) thì \(\left( {{x_0};{y_0}} \right)\) không là nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\༒\a'x + b'y = c'\end{ar🐻ray} \right.\,\,\).
+ Nếu \(a{x_0} + b{y_0} \ne c\) và \(a'{x_0} + b'{y_0} = c'\) thì \(\left( {{x_0};{y_0}} \right)\) không là nghiệm của 𒐪hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x +💟 b'y = c'\end{array} \right.\,\,\).
+ Nếu \(a{x_0} + b{y_0} = c\) và \(a'{x_0} + b'{y_0} = c'\) thì \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\).Các bài khác cùng chuyên mục