ftw bet

Lý thuyết Hình cầu Toán 9 Cùng khám phá

1. Hình cầu Khi cắt hình cầu bởi một mặt phẳng, ta được một hình tròn. Khi cắt mặt cầu bởi một hình phẳng, ta được một hình tròn. Nếu mặt phẳng đi qua tâm của mặt cầu thì đường tròn đó có bán kính R và được gọi là đường tròn lớn. Nếu mặt phẳng không đi qua tâm của mặt cầu thì đường tròn đó có bán kính bé hơn R.

Tổng hợp Đề thi vào 10 có đáp án và lời giải

Toán - Văn - Anh
Quảng cáo

1. Hình cầu

Khi cắt hình cầu bởi một mặt phẳng, ta được một hình tròn. Khi cắt mặt cầu bởi một hình phẳng, ta được một hình tròn. Nếu mặt phẳng đi qua tâm của mặt cầu thì đường tròn đó có bán kính R và được gọi là đường tròn lớn. Nếu mặt phẳng không đi qua tâm của mặt cầu thì đường tròn đó có bán kính bé hơn R.

Ví dụ: Khi cắt hình cầu bởi các mặt phẳng khác nhau, ta được các hình tròn có bán kính khác nhau. 

2. Diện tích của mặt cầu

Diện tích S của mặt cầu là: \(S = 4\pi {R^2} = \pi {d^2}\) Với R là bán kính và d là đường kính của mặt cầu.

Ví dụ:

Diện tích mặt cầu là:\(S = 4\pi {R^2} = 4\pi {.10^2} = 400\pi \left( {c{m^2}} \right)\),

3. Thể tích hình cầu

Thể tích của hình cầu có bán kính R là \(V = \frac{4}{3}\pi {R^3}\).

Ví dụ:

Thể tích hình cầu là:\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.10^3} = \frac{{4000\pi }}{3}\left( {c{m^3}} \right)\).

Quảng cáo

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|