ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Lý thuyết Đường tiệm cận của đồ thị hàm số Toán 12 Chân trời sáng tạo

Bài 3. Đường tiệm cận của đồ thị hàm số 1. Đường tiệm cận đứng

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

1. Đường tiệm cận đứng

Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:\(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) =  + \infty ;\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) =  - \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) =  + \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) =  - \infty \).

Ví dụ: 𓄧Tìm TCĐ của đồ thị hàm số \(y = f(x) = \frac{{3 - x}}{{x + 2}}\)

Ta có: \(\mathop {\lim }\limits_{x \to  - {2^ + }} \frac{{3x - 2}}{{x + 2}} =  + \infty \)Vậy đồ thị hàm số có TCĐ là x = -2.

2. Đường tiệm cận ngang

Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f(x) = {y_0}\).

Ví dụ:♚ Tìm TCN của đồ thị hàm số \(y = f(x) = \frac{{3x - 2}}{{x + 1}}\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{3x - 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3x - 2}}{{x + 1}} = 3\)Vậy đồ thị hàm số f(x) có TCN là y = 3.

3. Đường tiệm cận xiên

Đường thẳng \(y = ax + b(a \ne 0)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = \left[ {f(x) - (ax + b)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f(x) = \left[ {f(x) - (ax + b)} \right] = 0\).

Ví dụ: 🦂Tìm TCX của đồ thị hàm số \(y = f(x) = x + \frac{1}{{x + 2}}\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f(x) - x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{x + 2}} = 0\)Vậy đồ thị hàm số có TCX là y = x.

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{muse là gì}|꧅{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|♛{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|ꦚ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|ꩵ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|💧{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🌠{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|