Giải mục 3 trang 57, 58 SGK Toán 11 tập 2 - Kết nối tri thứcCho hai đường thẳng chéo nhau a và b.💛Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
HĐ 4 Video hướng dẫn giải Phương pháp giải: Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm bất kì trên a đến (P).Lời giải chi tiết: a) Mặt phẳng chứa a và a' có vuông góc với (Q) b) Ta có \(MN \bot \left( Q \right),b \subset \left( Q \right) \Rightarrow MN \bot b\) \(MN \bot a\) (M là hình chiếu của N trên a) Vậy MN có vuông góc với cả hai đường thẳng a và b. c) Vì a // (Q) nên d(a, (Q)) = d(M, (Q)) = MNKP Video hướng dẫn giải Phương pháp giải: Nếu đường vuông góc chung \(\Delta \) cắt a, b tương ứng tại M, N thì độ dài đoạn thẳng MN được gọi là khoảng cách giữa hai đường thẳng chéo nhau a, b.Lời giải chi tiết: Vì \(a \bot \left( P \right)\) tại O, \(OH \subset \left( P \right) \Rightarrow a \bot OH\)tại O \(OH \bot b\) tại H \( \Rightarrow d\left( {a,b} \right) = OH\)LT 3 Video hướng dẫn giải Phương pháp giải: - Khoảng cách từ một điểm M đến một đường thẳng a là khoảng cách giữa M và hình chiếu H của M trên a. - Đường thẳng vuông góc với mặt phẳng nếu nó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng đó. - Nếu đường vuông góc chung \(\Delta \) cắt a, b tương ứng tại M, N thì độ dài đoạn thẳng MN được gọi là khoảng cách giữa hai đường thẳng chéo nhau a, b.Lời giải chi tiết: TL Video hướng dẫn giải Phương pháp giải: Dựa vào lý thuyết về khoảng cách đã học của bàiLời giải chi tiết: - Khoảng cách từ một điểm M đến một đường thẳng a là khoảng cách giữa M và hình chiếu H của M trên a. - Khoảng cách từ điểm M đến mặt phẳng (P) là khoảng cách giữa M và hình chiếu H của M trên (P) - Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm bất kì trên a đến (P). - Khoảng cách giữa hai mặt phẳng song song (P) và (Q) là khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia. Mà đường vuông góc là đường ngắn nhất nên khoảng cách giữa hai hình được nêu trong bài học (điểm, đường thẳng, mặt phẳng) là khoảng cách nhỏ nhất giữa một điểm thuộc hình này và một điểm thuộc hình kia.
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |