Giải mục 2 trang 106,107 SGK Toán 11 tập 1 - Kết nối tri thứcCho hai dãy số (left( {{u_n}} right)) và (left( {{v_n}} right)) với ({u_n} = 2 + frac{1}{n},;;;{v_n} = 3 - frac{2}{n}) Tính và so sánh: (mathop {lim}limits_{n to + infty } left( {{u_n} + {v_n}} right)) và (mathop {lim}limits_{n to + infty } {u_n} + mathop {lim}limits_{n to + infty } {v_n})♔Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
HĐ 3 Video hướng dẫn giải Phương pháp giải: Tính \({u_n} + {v_n} \) và dùng công thức \(\mathop {lim}\limits_{n \to + \infty }\frac{1}{n}=0\)Lời giải chi tiết: Ta có: \({u_n} + {v_n} = 2 + \frac{1}{n} + 3 - \frac{2}{n} = 5 - \frac{1}{n}\) Do đó: \(\left( {{u_n} + {v_n}} \right)\; = 5\) \({u_n}\; = 2\), \({v_n}\; = 3\) Vậy \(\mathop {lim}\limits_{n \to + \infty } \left( {{u_n} + {v_n}} \right) = \mathop {lim}\limits_{n \to + \infty } {u_n} + \mathop {lim}\limits_{n \to + \infty } {v_n}\)LT 3 Video hướng dẫn giải Phương pháp giải: Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn. Lời giải chi tiết: \(\frac{{\sqrt {2{n^2} + 1} }}{{n + 1}}\; = \frac{{\sqrt {2 + \frac{1}{{{n^2}}}} }}{{1 + \frac{1}{n}}}\; = \frac{{\left( {\sqrt {2 + \frac{1}{{{n^2}}}} } \right)\;}}{{\left( {1 + \frac{1}{n}} \right)\;}} = \frac{{\sqrt 2 }}{1} = \sqrt 2 \).
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |