ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải mục 1 trang 111, 112, 113 SGK Toán 11 tập 1 - Kết nối tri thức

Cho hàm số (fleft( x right) = frac{{4 - {x^2}}}{{x - 2}}) a) Tìm tập xác định của hàm số (fleft( x right)) b) Cho dãy số ({x_n} = frac{{2n + 1}}{n}). Rút gọn (fleft( {{x_n}} right)) và tính giới hạn của dãy (left( {{u_n}} right)) với ({u_n} = fleft( {{x_n}} right)) c) Với dãy số (left( {{x_n}} right)) bất kì sao cho ({x_n} ne 2) và ({x_n} to 2), tính (fleft( {{x_n}} right)) và tìm (mathop {{rm{lim}}}limits_{n to + infty } fleft( {{x_n}} right))

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 1 trang 111 SGK Toán 11 Kết nối tri thức

Cho hàm số \(f\left( x \right) = \frac{{4 - {x^2}}}{{x - 2}}\). a) Tìm tập xác định của hàm số \(f\left( x \right)\). b) Cho dãy số \({x_n} = 2 + \frac{{1}}{n}\). Rút gọn \(f\left( {{x_n}} \right)\) và tính giới hạn của dãy \(\left( {{u_n}} \right)\) với \({u_n} = f\left( {{x_n}} \right)\). c) Với dãy số \(\left( {{x_n}} \right)\) bất kì sao cho \({x_n} \ne 2\) và \({x_n} \to 2\), tính \(f\left( {{x_n}} \right)\) và tìm \(\mathop {{\rm{lim}}}\limits_{n \to  + \infty } f\left( {{x_n}} \right)\).

Phương pháp giải:

Giả sử \(\left( {a,b} \right)\) là một khoảng chứa điểm \({x_0}\) và hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a,b} \right)\), có thể trừ điểm \({x_0}\). Ta nói hàm số \(f\left( x \right)\) có giới hạn là số L khi x dần tới \({x_0}\) nếu với dãy số \(\left( {{x_0}} \right)\) bất kì, , ta có \(f\left( {{x_n}} \right) \to L\), ký hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) hay  khi \(x \to {x_0}\).

Lời giải chi tiết:

a) \(D = \mathbb{R}/\left\{ 2 \right\}\). b) \(x_n = 2 + \frac{{1}}{n} = \frac{2n+1}{n}\). \(f\left( {{x_n}} \right) = \frac{{4 - {{\left( {\frac{{2n + 1}}{4}} \right)}^2}}}{{\frac{{2n + 1}}{n} - 2}} = \frac{{ - \left( {\frac{{2n + 1}}{n} - 2} \right)\left( {\frac{{2n + 1}}{n} + 2} \right)}}{{\frac{{2n + 1}}{n} - 2}} =  - \frac{{2n + 1}}{n} - 2\). \(\mathop {\lim }\limits_{n \to  + \infty } {x_n} = \mathop {\lim }\limits_{n \to  + \infty } \left( { - \frac{{2n + 1}}{n} - 2} \right) =  - 4\). c) \(f\left( {{x_n}} \right) = \frac{{4 - x_n^2}}{{{x_n} - 2}}\). \(\mathop {\lim }\limits_{n \to  + \infty } f\left( {{x_n}} \right) =  - 4\).

LT1

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 1 trang 113 SGK Toán 11 Kết nối tri thức

Tính \(\mathop {{\rm{lim}}}\limits_{x \to 1} \)  \(\frac{{x - 1}}{{\sqrt x  - 1}}\).

Phương pháp giải:

Nếu \(f\left( x \right) \ge 0\) với mọi \(x \in \left( {a,b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)}  = \sqrt L \).

Lời giải chi tiết:

\(\mathop {\lim }\limits_{n \to 1} \frac{{x - 1}}{{\sqrt x  - 1}} = \mathop {\lim }\limits_{n \to 1} \left( {\sqrt x  + 1} \right) = 2\).

HĐ2

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 2 trang 113 SGK Toán 11 Kết nối tri thức

Cho hàm số \(f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{x - 1}}\). a) Cho \({x_n} = 1 -  \frac{1}{{n + 1}}\) và \({x'_n} = 1+ \frac{{1}}{n}\). Tính \({y_n} = f\left( {{x_n}} \right)\) và \({y'_n} = f\left( {{{x'}_n}} \right)\). b) Tìm giới hạn của các dãy số \(\left( {{y_n}} \right)\) và \(\left( {{{y'}_n}} \right)\). c) Cho các dãy số \(\left( {{x_n}} \right)\) và \(\left( {{{x'}_n}} \right)\) bất kì sao cho \({x_n} < 1 < x{'_n}\) và \({x_n} \to 1\), \(x{'_n} \to 1\), tính \(\mathop {{\rm{lim}}}\limits_{n \to  + \infty } f\left( {{x_n}} \right)\) và \(\mathop {{\rm{lim}}}\limits_{n \to  + \infty } f\left( {{{x'}_n}} \right)\).

Phương pháp giải:

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {{x_0};b} \right)\). Ta nói số L là giới hạn bên phải của \(f\left( x \right)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\) ta có \(f\left( {{x_n}} \right) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\).

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\). Ta nói số L là giới hạn bên trái của \(f\left( x \right)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0},\) ta có \(f\left( {{x_n}} \right) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\).

Lời giải chi tiết:

a) \({x_n} = 1 -  \frac{1}{{n + 1}} = \frac{n}{{n + 1}}\) và \({x'_n} = 1+ \frac{{1}}{n} = \frac{{n + 1}}{n}\). Với \({x_n} = \frac{n}{{n + 1}} \Rightarrow {y_n} = f\left( {{x_n}} \right) = \frac{{\left| {\frac{n}{{n + 1}} - 1} \right|}}{{\frac{n}{{n + 1}} - 1}}\). Do \(n < n + 1 \Rightarrow \frac{n}{{n + 1}} < 1 \Rightarrow \frac{n}{{n + 1}} - 1 < 0\) \( \Rightarrow {y_n} = \frac{{ - \left( {\frac{n}{{n + 1}} - 1} \right)}}{{\frac{n}{{n + 1}} - 1}} =  - 1\). Với \(x{'_n} = \frac{{n + 1}}{n} \Rightarrow y{'_n} = f\left( {{x_n}} \right) = \frac{{\left| {\frac{{n + 1}}{n} - 1} \right|}}{{\frac{{n + 1}}{n} - 1}}\). Do \(n + 1 > n \Rightarrow \frac{{n + 1}}{n} > 1 \Rightarrow \frac{{n + 1}}{n} - 1 > 0\). \({y_n} = \frac{{\frac{{n + 1}}{n} - 1}}{{\frac{{n + 1}}{n} - 1}} = 1\). b) \(\lim \left( {{y_n}} \right) = \lim \left( { - 1} \right) =  - 1\). \(\lim \left( {{{y'}_n}} \right) = \lim 1 = 1\). c) \(\mathop {\lim }\limits_{n \to  + \infty } f\left( {{x_n}} \right) =  - 1\). \(\mathop {\lim }\limits_{n \to  + \infty } f(x{'_n}) = 1\).

LT2

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 2 trang 113 SGK Toán 11 Kết nối tri thức

Cho hàm số \(f(x) = \left\{ \begin{array}{l} - x,x < 0\\\sqrt x ,x \ge 0\end{array} \right.\) Tính \(\mathop {{\rm{lim}}}\limits_{x \to {0^ + }} f\left( x \right)\), \(\mathop {{\rm{lim}}}\limits_{x \to {0^ - }} f\left( x \right)\) và \(\mathop {{\rm{lim}}}\limits_{x \to 0} f\left( x \right)\).

Phương pháp giải:

\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\).

Lời giải chi tiết:

Với dãy số \(\left( {{x_n}} \right)\) bất kì sao cho \(x < 0,\) ta có: \(f\left( {{x_n}} \right) =  - {x_n}\). Do đó: \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 0 \). Với dãy số \(\left( {{x_n}} \right)\) bất kì sao cho \(x \ge 0\) ta có: \(f\left( {{x_n}} \right) = \sqrt x \). Do đó: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 0 \). Do \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) =  0 \)  suy ra \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 0\).

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|🅰{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🍬{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|🍷{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|꧅{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|🥂{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|♓{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|