ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài tập 9.33 trang 91 SGK Toán 9 tập 2 - Kết nối tri thức

Cho hình vuông ABCD có cạnh bằng 4cm. Tính chu vi, diện tích của các đường tròn nội tiếp và ngoại tiếp hình vuông ABCD.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Cho hình vuông ABCD có cạnh bằng 4cm. Tính chu vi, diện tích của các đường tròn nội tiếp và ngoại tiếp hình vuông ABCD.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Gọi O là giao điểm của hai đường chéo. + Chứng minh \(OA = OB = OC = OD\) nên đường tròn ngoại tiếp hình vuông ABCD là đường tròn tâm O, bán kính OD. + Áp dụng định lí Pythagore vào tam giác ADB vuông tại A tính DB. + Chu vi đường tròn ngoại tiếp hình vuông ABCD là: \({C_1} = \pi .DB\) + Diện tích hình tròn ngoại tiếp hình vuông ABCD là: \({S_1} = \pi .O{D^2}\) + Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. + Chứng minh các \(OE = OH = OF = OG\), suy ra, đường tròn (O; OE) nội tiếp hình vuông ABCD. + Tính \(OE = AE = \frac{{AB}}{2}\) + Chu vi đường tròn nội tiếp hình vuông ABCD là: \({C_2} = 2\pi .OE\) + Diện tích hình tròn nội tiếp hình vuông ABCD là: \({S_2} = \pi .O{E^2}\)

Lời giải chi tiết

Gọi O là tâm của hình vuông ABCD. Do đó, đường tròn ngoại tiếp hình vuông ABCD là đường tròn tâm O, bán kính OD. Áp dụng định lí Pythagore vào tam giác ADB vuông tại A có: \(A{B^2} + A{D^2} = D{B^2} \Rightarrow DB = \sqrt {A{B^2} + A{D^2}}  = \sqrt {{4^2} + {4^2}}  = 4\sqrt 2 \left( {cm} \right) \Rightarrow OD = 2\sqrt 2 \left( {cm} \right)\) Chu vi đường tròn ngoại tiếp hình vuông ABCD là: \({C_1} = \pi .DB = 4\sqrt 2 \pi \left( {cm} \right)\) Diện tích hình tròn ngoại tiếp hình vuông ABCD là: \({S_1} = \pi .O{D^2} = \pi .{\left( {2\sqrt 2 } \right)^2} = 8\pi \left( {c{m^2}} \right)\) Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Tam giác AOB có: \(OA = OB\) (bán kính đường tròn (O)) nên tam giác OAB cân tại O. Do đó, OE là đường trung tuyến đồng thời là đường cao. Do đó, \(OE \bot AB \Rightarrow \widehat {OEA} = \widehat {OEB} = {90^o}\) Chứng minh tương tự ta có: \(\widehat {OFB} = \widehat {OFC} = \widehat {OGC} = \widehat {OGD} = \widehat {OHD} = \widehat {OHA} = {90^o}\) Tứ giác AEOH có: \(\widehat {HAE} = \widehat {OEA} = \widehat {OHA} = {90^o}\) nên tứ giác AEOH là hình chữ nhật. Mà AO là tia phân giác của góc HAE (do ABCD là hình vuông) nên AEOH là hình vuông. Do đó, \(OE = OH\). Chứng minh tương tự ta có: \(OE = OF,OF = OG,OG = OH\) Do đó: \(OE = OH = OF = OG\). Suy ra, đường tròn (O; OE) nội tiếp hình vuông ABCD. Ta có: \(OE = AE = \frac{{AB}}{2} = 2cm\) Chu vi đường tròn nội tiếp hình vuông ABCD là: \({C_2} = 2\pi .OE = 2\pi .2 = 4\pi \left( {cm} \right)\) Diện tích hình tròn nội tiếp hình vuông ABCD là: \({S_2} = \pi .O{E^2} = \pi {.2^2} = 4\pi \left( {c{m^2}} \right)\)

Quảng cáo

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close
{muse là gì}|ꩲ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|♉{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|💞{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|♉{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|🦋{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|꧑{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|