Giải bài tập 5.5 trang 102 SGK Toán 9 tập 1 - Cùng khám pháTrong Hình 5.14, cho hai đường tròn cùng tâm O, các điểm A, B, C, D thẳng hàng và \(OH \bot AB\left( {H \in AB} \right)\). a) Chứng minh rằng H là trung điểm của AB và CD. b) Chứng minh rằng \(AC = BD\). c) Biết bán kính đường tròn lớn là 10cm, \(CD = 16cm\) và \(AB = 8cm\). Tính bán kính đường tròn nhỏ.
Toán - Văn - Anh
Quảng cáo
Đề bài Trong Hình 5.14🐟, cho hai đường tròn cùng tâm O, các điểm A, B, C, D thẳng hàng và \(OH \bot AB\left( {H \in AB} \right)\). a) Chứng minh rằng H là trung điểm của AB và CD. b) Chứng minh rằng \(AC = BD\). c) Biết bán kính đường tròn lớn là 10cm, \(CD = 16cm\) và \(AB = 8cm\). Tính bán kính đường tròn nhỏ.Phương pháp giải - Xem chi tiết
a) Xét đường tròn (O, OC) có: \(OC = OD\) nên tam giác COD cân tại O. Do đó, OH là đường cao đồng thời là đường trung tuyến. Suy ra, H là trung điểm của CD.
Xét (O, OA) có: \(OA = OB\) nên tam giác OAB cân tại O. Do đó, OH là đường cao đồng thời là đường trung tuyến. Suy ra, H là trung điểm của AB.
b) Theo a ta có: \(CH = HD\), \(AH = HB\) nên \(CH - HA = HD - HB\), suy ra \(AC = BD\).
c) Tam giác HOD vuông tại H nên \(O{H^2} + H{D^2} = O{D^2}\)
Tam giác HOB vuông tại H nên \(O{B^2} = O{H^2} + H{B^2}\), từ đó tính được bán kính đường tròn nhỏ.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |