Giải bài tập 4 trang 10 SGK Toán 9 tập 2 - Chân trời sáng tạoCho hàm số (y = a{x^2}left( {a ne 0} right)). a) Tìm a, biết đồ thị của hàm số đi qua điểm M(2;6). b) Vẽ đồ thị của hàm số với a vừa tìm được. c) Tìm các điểm thuộc đồ thị trên có tung độ y = 9.
Toán - Văn - Anh
Quảng cáo
Đề bài Cho hàm số \(y = a{x^2}\left( {a \ne 0} \right)\). a) Tìm a, biết đồ thị của hàm số đi qua điểm M(2;6). b) Vẽ đồ thị của hàm số với a vừa tìm được. c) Tìm các điểm thuộc đồ thị trên có tung độ y = 9.Video hướng dẫn giải Phương pháp giải - Xem chi tiết
a) Thay x = 2; y = 6 vào hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) để tìm a.
b) Để vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), ta thực hiện các bước sau:
+ Lập bảng giá trị của hàm số với một số giá trị của x (thường lấy 5 giá trị gồm số 0 và hai cặp giá trị đối nhau).
+ Trên mặt phẳng tọa độ Oxy, đánh dấu các điểm (x;y) trong bảng giá trị (gồm điểm (0;0) và hai cặp điểm đối xứng nhau qua trục Oy).
+ Vẽ đường parabol đi qua các điểm vừa được đánh dấu.
c) Thay y = 9 để tìm x và kết luận các điểm thuộc đồ thị.
Lời giải chi tiết a) Thay x = 2; y = 6 vào hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), ta được:6 = a.22 suy ra a = \(\frac{3}{2}\). b) Theo phần a ta vẽ đồ thị hàm số \(y = \frac{3}{2}{x^2}\). Bảng giá trị:
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |