Giải bài tập 3.21 trang 65 SGK Toán 9 tập 1 - Cùng khám pháTrong một nghiên cứu về loài khủng long, người ta dùng công thức sau để ước tính tốc độ di chuyển của khủng long: \(Fr = \frac{{{v^2}}}{{gl}}\), trong đó Fr là số Froude, v(m/s) là tốc độ di chuyển của khủng long, l(m) là chiều dài chân của khủng long và \(g = 9,8m/{s^2}\) là gia tốc trọng trường. (Nguồn: R.McNeill Alexander, How Dinosaur Ran, Scientific American, Vol.264, No.4 (April 1991), pp. 130 – 137) a) Viết biểu thức tính v theo l và Fr từ công thức trên. b) Ước tính tốc độ di chuyể
Toán - Văn - Anh
Quảng cáo
Đề bài Trong một nghiên cứu về loài khủng long, người ta dùng công thức sau để ước tính tốc độ di chuyển của khủng long: \(Fr = \frac{{{v^2}}}{{gl}}\), trong đó Fr là số Froude, v(m/s) là tốc độ di chuyển của khủng long, l(m) là chiều dài chân của khủng long và \(g = 9,8m/{s^2}\) là gia tốc trọng trường.(Nguồn: R.McNeill Alexander, How Dinosaur Ran, 🗹Scientific American, Vol.264, No.4 (April 1991), pp. 130 – 137) Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức căn bậc hai của một biểu thức để tìm v: Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn thức bậc hai của A.
b) + Thay \(l = 2,8,Fr = 0,16,g = 9,8\) vào biểu thức tính vận tốc vừa làm ở phần a.
+ Sử dụng kiến thức căn thức bậc hai của một bình phương để tính: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}} = \left| A \right|\).
Lời giải chi tiết a) Vì \(Fr = \frac{{{v^2}}}{{gl}}\) nên \({v^2} = Fr.g.l\). Do đó, \(v = \sqrt {Fr.g.l} \). b) Với \(l = 2,8,Fr = 0,16,g = 9,8\) ta có: \(v = \sqrt {0,16.9,8.2,8} = \sqrt {\frac{{2744}}{{625}}} = \sqrt {\frac{{{{14}^3}}}{{{{25}^2}}}} = \frac{{14\sqrt {14} }}{{25}} \approx 2,1\left( {m/s} \right)\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |