ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài tập 16 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo

Cho biết bốn đoạn thẳng nối từ một đỉnh của tứ diện đến trọng tâm mặt đối diện luôn cắt nhau tại một điểm gọi là trọng tâm của tứ diện đó. Một phân tử metan CH4 được cấu tạo bởi bốn nguyên tử hydrogen ở các đỉnh của một tứ diện đều và một nguyên tử carbon ở trọng tâm của tứ diện. Góc liên kết là góc tạo bởi liên kết H–C–H là góc giữa các đường nối nguyên tử carbon với hai trong số các nguyên tử hydrogen. Chứng minh rằng góc liên kết này gần bằng \(109,5^\circ \)

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

 
 
Cho biết bốn đoạn thẳng nối từ một đỉnh của tứ diện đến trọng tâm mặt đối diện luôn cắt nhau tại một điểm gọi là trọng tâm của tứ diện đó. Một phân tử metan CH4 được cấu tạo bởi bốn nguyên tử hydrogen ở các đỉnh của một tứ diện đều và một nguyên tử carbon ở trọng tâm của tứ diện. Góc liên kết là góc tạo bởi liên kết H–C–H là góc giữa các đường nối nguyên tử carbon với hai trong số các nguyên tử hydrogen. Chứng minh rằng góc liên kết này gần bằng \(109,5^\circ \)
 

Phương pháp giải - Xem chi tiết

Dựng một hệ trục tọa độ theo đề và dùng công thức tích vô hướng giữa 2 vecto để tìm góc liên kết
 

Lời giải chi tiết

Từ hình vẽ ta thấy góc liên kết là góc \((\overrightarrow {GA} ,\overrightarrow {GS} )\) Ta có: \(AE \bot BC\), \(SH \bot (ABC) \Rightarrow \left\{ \begin{array}{l}SH \bot AE\\SH \bot BC\end{array} \right.\) nên ta có hệ trục tọa độ như hình với với E trùng với gốc tọa độ O Giả sử các cạnh của tứ diện có độ dài là a Ta có: \(SE = AE = \sqrt {A{B^2} - B{E^2}}  = \sqrt {{a^2} - {{(\frac{a}{2})}^2}}  = \frac{{a\sqrt 3 }}{2} \Rightarrow A(\frac{{a\sqrt 3 }}{2};0;0)\) \(HE = \frac{{AE}}{3} = \frac{{a\sqrt 3 }}{6} \Rightarrow H(\frac{{a\sqrt 3 }}{6};0;0)\) \(SH = \sqrt {S{E^2} - H{E^2}}  = \sqrt {{{(\frac{{a\sqrt 3 }}{2})}^2} - {{(\frac{{a\sqrt 3 }}{6})}^2}}  = \frac{{a\sqrt 6 }}{3} \Rightarrow S(\frac{{a\sqrt 3 }}{6};0;\frac{{a\sqrt 6 }}{3})\) Lại có: \(\frac{{FE}}{{SE}} = \frac{{HE}}{{AE}} = \frac{1}{3} \Rightarrow FH//SA\) và AF cắt SH tại G nên  \(\frac{{GH}}{{GS}} = \frac{{GF}}{{GE}} = \frac{{FH}}{{SA}} = \frac{{HE}}{{AE}} = \frac{1}{3}\) \( \Rightarrow GH = \frac{1}{4}SH = \frac{1}{4}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{{12}} \Rightarrow G(\frac{{a\sqrt 3 }}{6};0;\frac{{a\sqrt 6 }}{{12}})\) Do đó: \(\overrightarrow {GA}  = (\frac{{a\sqrt 3 }}{3};0; - \frac{{a\sqrt 6 }}{{12}}) \Rightarrow GA = \frac{{a\sqrt 6 }}{4}\) \(\overrightarrow {GS}  = (0;0;\frac{{a\sqrt 6 }}{4}) \Rightarrow GS = \frac{{a\sqrt 6 }}{4}\) Ta có: \(\cos (\overrightarrow {GA} ,\overrightarrow {GS} ) = \frac{{ - \frac{{a\sqrt 6 }}{{12}}.\frac{{a\sqrt 6 }}{4}}}{{\frac{{a\sqrt 6 }}{4}.\frac{{a\sqrt 6 }}{4}}} =  - \frac{1}{3} \Rightarrow (\overrightarrow {GA} ,\overrightarrow {GS} ) \approx 109,5^\circ \)
 
Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{muse là gì}|✅{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|⛦{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|ಌ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|♑{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|🐷{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🌱{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|