ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài tập 1.40 trang 47 SGK Toán 12 tập 1 - Cùng khám phá

Kính viễn vọng Hubble được tàu không gian Discovery đưa vào sử dụng ngày 24/4/1990. Mô hình vận tốc của tàu trong sứ mệnh này, từ lúc rời bệ phóng (t=0 giây) cho đến khi được tên lửa đẩy nhanh khỏi bệ tại thời điểm t = 126 giây, được xác định bởi công thức: \(v(t) = 0,001302{t^3} - 0,09029{t^2} + 23,61t - 3,083{\rm{ (feet/gi\^a y) }}\) (Nguồn: James Stewart, J. (2015). Calculus. Cengage Learning 8th edition, p. 282). Tính gia tốc lớn nhất và gia tốc nhỏ nhất của tàu trong khoảng thời gian này

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Kính viễn vọng Hubble được tàu không gian Discovery đưa vào sử dụng ngày 24/4/1990. Mô hình vận tốc của tàu trong sứ mệnh này, từ lúc rời bệ phóng (t=0 giây) cho đến khi được tên lửa đẩy nhanh khỏi bệ tại thời điểm t = 126 giây, được xác định bởi công thức: \(v(t) = 0,001302{t^3} - 0,09029{t^2} + 23,61t - 3,083{\rm{ (feet/giây) }}\) (Nguồn: James Stewart, J. (2015). Calculus. Cengage Learning 8th edition, p. 282). Tính gia tốc lớn nhất và gia tốc nhỏ nhất của tàu trong khoảng thời gian này (làm tròn kết quả đến hàng phần trăm).

Phương pháp giải - Xem chi tiết

Tính gia tốc từ vận tốc: Gia tốc là đạo hàm của vận tốc theo thời gian. a(t)=v′(t). Tìm các giá trị cực đại và cực tiểu của gia tốc: - Để tìm các giá trị cực đại và cực tiểu của gia tốc, chúng ta cần tính đạo hàm cấp hai của vận tốc, rồi tìm nghiệm của phương trình này. - Kiểm tra các điểm cực trị và biên (từ t=0 đến t=126) để xác định giá trị lớn nhất và nhỏ nhất của gia tốc.

Lời giải chi tiết

Ta có hàm vận tốc \(v(t)\) :\(v(t) = 0,001302{t^3} - 0,09029{t^2} + 23,61t - 3,083\) Đạo hàm của \(v(t)\) là: \(a(t) = {v^\prime }(t) = \frac{d}{{dt}}\left[ {0,001302{t^3} - 0,09029{t^2} + 23,61t - 3,083} \right]\) Áp dụng quy tắc đạo hàm: \(\begin{array}{l}a(t) = 3.0,001302{t^2} - 2.0,09029t + 23,61\\a(t) = 0,003906{t^2} - 0,18058t + 23,61\end{array}\) Đạo hàm của \(a(t)\) là: \(\begin{array}{l}{a^\prime }(t) = \frac{d}{{dt}}\left[ {0,003906{t^2} - 0,18058t + 23,61} \right]\\{a^\prime }(t) = 2 \cdot 0,003906t - 0,18058\\{a^\prime }(t) = 0,007812t - 0,18058\end{array}\) Giải phương trình \({a^\prime }(t) = 0\): \(\begin{array}{l}0,007812t - 0,18058 = 0\\0,007812t = 0,18058\\t = \frac{{0,18058}}{{0,007812}}\\t \approx 23,11\end{array}\) Ta có \(t \approx 23,11\). Chúng ta sẽ kiểm tra giá trị của gia tốc tại các thời điểm \(t = 0,t = 23,11\) và \(t = 126\). Tại \(t = 0\): \(a(0) = 0,003906 \cdot {0^2} - 0,18058 \cdot 0 + 23,61 = 23,61\) Tại \(t = 23,11\): \(a(23,11) = 0,003906 \cdot {(23,11)^2} - 0,18058 \cdot 23,11 + 23,61 \approx 21,52\) Tại \(t = 126\): \(a(126) = 0,003906 \cdot {(126)^2} - 0,18058 \cdot 126 + 23,61 \approx 62,92\) Kết luận: Gia tốc lớn nhất: \( \approx 62,92\) feet / giây \(^2\) (tại \(t = 126\) giây). Gia tốc nhỏ nhất: \( \approx 21,52\) feet/giây \(^2\) (tại \(t \approx 23,11\) giây)

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{muse là gì}|🃏{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|༒{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|꧑{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|♈{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|😼{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|♓{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|