Giải bài tập 12 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạoTrong không gian (Oxyz), cho hình lăng trụ đứng (OBC.O'B'C') có đáy là tam giác (OBC) vuông tại (O). Cho biết (Bleft( {3;0;0} right)), (Cleft( {0;1;0} right)), (O'left( {0;0;2} right)). Tính góc giữa: a) hai đường thẳng (BO') và (B'C). b) hai mặt phẳng (left( {O'BC} right)) và (left( {OBC} right)). c) đường thẳng (B'C) và mặt phẳng (left( {O'BC} right)).
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Trong không gian Oxyz, cho hình lăng trụ đứng OBC.O'B'C' có đáy là tam giác OBC vuông tại O. Cho biết B(3;0;0), C(0;1;0), O'(0;0;2). Tính góc giữa: a) Hai đường thẳng BO' và B'C. b) Hai mặt phẳng (O'BC) và (OBC). c) Đường thẳng B'C và mặt phẳng (O'BC).Phương pháp giải - Xem chi tiết
a) Chỉ ra \(\overrightarrow {BO'} \) và \(\overrightarrow {B'C} \) lần lượt là các vectơ chỉ phương của các đường thẳng \(BO'\) và \(B'C\), sau đó sử dụng công thức \(\cos \left( {BO',B'C} \right) = \left| {\cos \left( {\overrightarrow {BO} ',\overrightarrow {B'C} } \right)} \right|\).
b) Với mặt phẳng \(\left( {O'BC} \right)\), ta cần chỉ ra một cặp vectơ chỉ phương, rồi tính tích có hướng để lần lượt tìm ra vectơ pháp tuyến \(\vec n\).
Với mặt phẳng \(\left( {OBC} \right)\), chỉ ra rằng \(\overrightarrow {OO'} \) là một vectơ pháp tuyến của mặt phẳng đó.
Từ đó suy ra \(\cos \left( {\left( {O'BC} \right),\left( {OBC} \right)} \right) = \left| {\cos \left( {\overrightarrow {OO'} ,\vec n} \right)} \right|\).
c) Từ câu a và b, ta có \(\overrightarrow {B'C} \) là một vectơ chỉ phương của \(B'C\), \(\vec n\) là một vectơ pháp tuyến của mặt phẳng \(\left( {O'BC} \right)\). Suy ra \(\sin \left( {B'C,\left( {O'BC} \right)} \right) = \left| {\cos \left( {\overrightarrow {B'C} ,\vec n} \right)} \right|\).
Lời giải chi tiết
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |