Giải bài 9 trang 108, 109, 110 vở thực hành Toán 7 tập 2Cho tam giác ABC cân tại đỉnh A. Gọi H là trung điểm của BC. a) Chứng minh (AH bot BC). b) Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB lấy điểm N sao cho (BM = CN). Chứng minh rằng (Delta ABM = Delta ACN). c) Gọi I là điểm trên AM, K là điểm trên AN sao cho (BI bot AM;CK bot AN). Chứng minh rằng tam giác AIK cân tại A, từ đó suy ra IK//MN.💝Tổng hợp đề thi học kì 2 lớp 7 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên...Quảng cáo
Đề bài Cho tam giác ABC cân tại đỉnh A. Gọi H là trung điểm của BC. a) Chứng minh \(AH \bot BC\). b) Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB lấy điểm N sao cho \(BM = CN\). Chứng minh rằng \(\Delta ABM = \Delta ACN\). c) Gọi I là điểm trên AM, K là điểm trên AN sao cho \(BI \bot AM;CK \bot AN\). Chứng minh rằng tam giác AIK cân tại A, từ đó suy ra IK//MN.Phương pháp giải - Xem chi tiết
a) Tam giác ABC cân tại A nên AH là đường trung tuyến đồng thời là đường cao.
b) + Vì \(\widehat {ABM} + \widehat {ABC} = {180^o}\), \(\widehat {ACN} + \widehat {ACB} = {180^o}\), \(\widehat {ABC} = \widehat {ACB}\) nên \(\widehat {ABM} = \widehat {ACN}\).
+ Chứng minh \(\Delta ABM = \Delta ACN\) (c.g.c).
c) + \(\Delta BIM = \Delta CKN\) (cạnh huyền – góc nhọn) nên \(MI = NK\). Mà \(AM = AN\) nên \(AI = AK\), suy ra \(\Delta AIK\) cân tại A. Suy ra \(\widehat {AIK} = \frac{{{{180}^o} - \widehat {IAK}}}{2}\).
+ Chứng minh \(\Delta AMN\) cân tại A nên \(\widehat {AMN} = \frac{{{{180}^o} - \widehat {MAN}}}{2}\). Suy ra \(\widehat {AIK} = \widehat {AMN}\) suy ra IK//MN.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |