Giải bài 8 trang 10 SBT toán 10 - Chân trời sáng tạoXác định giá trị của các hệ số a, b, c và xét dấu của tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\) trong mỗi trường hợp sau: a) Đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( { - 1; - 4} \right),\left( {0;3} \right)\) và \(\left( {1; - 14} \right)\)꧑Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...Quảng cáo
Đề bài Xác định giá trị của các hệ số a, b, c 𒁃và xét dấu của tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\) trong mỗi trường hợp sau: a) Đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( { - 1; - 4} \right),\left( {0;3} \right)\) và \(\left( {1; - 14} \right)\) b) Đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( {0; - 2} \right),\left( {2;6} \right)\) và \(\left( {3;13} \right)\) c) \(f\left( { - 5} \right) = 33,f\left( 0 \right) = 3\) và \(f\left( 2 \right) = 19\)Lời giải chi tiết a) Giả sử tam thức bậc hai có công thức tổng quát là \(f\left( x \right) = a{x^2} + bx + c\)Vì đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( { - 1; - 4} \right),\left( {0;3} \right)\) và \(\left( {1; - 14} \right)\) nên thay tọa độ của ba điểm vào phương trình tổng quát ta có:\(\left\{ \begin{array}{l} - 4 = a{\left( { - 1} \right)^2} + b\left( { - 1} \right) + c\\3 = a{.0^2} + b.0 + c\\ - 14 = a{\left( 1 \right)^2} + b\left( 1 \right) + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a - b + c = - 4\\c = 3\\a + b + c = - 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 12\\b = - 5\\c = 3\end{array} \right.\)Từ a, b, c đã xác định được ta có \(\Delta = 169 > 0\), tam thức có hai nghiệm phân biệt \(x = - \frac{3}{4}\) và \(x = \frac{1}{3}\), trong đó \(a = - 12 < 0\)Ta có bảng biến thiên sau đây
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |