ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài 7 trang 10 SBT toán 10 - Chân trời sáng tạo

Chứng minh rằng a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\) b) \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\) c) \( - {x^2} < - 2x + 3\) với mọi \(x \in \mathbb{R}\)

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Chứng minh rằng a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\) b) \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\) c) \( - {x^2} <  - 2x + 3\) với mọi \(x \in \mathbb{R}\)

Lời giải chi tiết

a) Tam thức \(2{x^2} + \sqrt 3 x + 1\) có \(\Delta  = {\left( {\sqrt 3 } \right)^2} - 4.2 =  - 5 < 0\) và \(a = 2 > 0\)Suy ra \(2{x^2} + \sqrt 3 x + 1 > 0\forall x \in \mathbb{R}\)  (đpcm)b) Tam thức \({x^2} + x + \frac{1}{4}\) có \(\Delta  = {1^2} - 4.\frac{1}{4} = 0\), có nghiệm kép \(x =  - \frac{1}{2}\) và \(a = 1 > 0\)Suy ra \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\)  (đpcm)c) \( - {x^2} <  - 2x + 3\) với mọi \(x \in \mathbb{R}\)         \( \Leftrightarrow {x^2} - 2x + 3 > 0\) với mọi \(x \in \mathbb{R}\)Xét tam thức \({x^2} - 2x + 3\) ta có \(\Delta  = {\left( { - 2} \right)^2} - 4.3 =  - 8 < 0\) và \(a = 1 > 0\)Suy ra \({x^2} - 2x + 3 > 0\) với mọi \(x \in \mathbb{R}\)\( \Leftrightarrow  - {x^2} <  - 2x + 3\)        (đpcm)

Quảng cáo

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close
{muse là gì}|💜{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|ཧ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|ꦫ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🌟{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|ღ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|♏{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|