Giải bài 73 trang 33 sách bài tập toán 11 - Cánh diềuGiải phương trình:
Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo
Đề bài Giải phương trình: a) \(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin \left( {3x - \frac{\pi }{6}} \right)\) b) \(\cos \left( {x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4} - 2x} \right)\) c) \({\cos ^2}\left( {\frac{x}{2} + \frac{\pi }{6}} \right) = {\cos ^2}\left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right)\) d) \(\cot 3x = \tan \frac{{2\pi }}{7}\)Phương pháp giải - Xem chi tiết
a) Sử dụng kết quả \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
b) Sử dụng kết quả \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
c) Sử dụng công thức \({\cos ^2}x = \frac{{1 + \cos 2x}}{2}\)
Sử dụng kết quả \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
d) Sử dụng công thức \(\tan x = \cot \left( {\frac{\pi }{2} - x} \right)\) và kết quả \(\cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\) Lời giải chi tiết a) Ta có:\(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin \left( {3x - \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{3} = 3x - \frac{\pi }{6} + k2\pi \\2x + \frac{\pi }{3} = \pi - 3x + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - x = - \frac{\pi }{2} + k2\pi \\5x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k2\pi \\x = \frac{\pi }{6} + k\frac{{2\pi }}{5}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)b) Ta có:\(\cos \left( {x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4} - 2x} \right) \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} - 2x + k2\pi \\x + \frac{\pi }{4} = 2x - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = k2\pi \\ - x = - \frac{\pi }{2} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{{2\pi }}{3}\\x = \frac{\pi }{2} + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |