Giải bài 70 trang 85 sách bài tập toán 8 – Cánh diềuCho tam giác \(ABC\) có ba góc nhọn, các đường cao \(BD\) và \(CE\) cắt nhau tại \(H\). Chứng minh:
Toán - Văn - Anh - Khoa học tự nhiên
Quảng cáo
Đề bài Cho tam giác \(ABC\) có ba góc nhọn, các đường cao \(BD\) và \(CE\) cắt nhau tại \(H\). Chứng minh: a) \(\Delta EBH\backsim \Delta DCH,\Delta ADE\backsim \Delta ABC\); b) \(DB\) là tia phân giác của góc \(EDI\), với \(I\) là giao điểm của \(AH\) và \(BC\).Phương pháp giải - Xem chi tiết
Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:
\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).
Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).
Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |