Giải bài 65 trang 32 sách bài tập toán 11 - Cánh diềuGiá trị của biểu thức \(A = {\left( {2\sin x - \cos x} \right)^2} + {\left( {2\cos x + \sin x} \right)^2}\) bằng:
Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo
Đề bài Giá trị của biểu thức \(A = {\left( {2\sin x - \cos x} \right)^2} + {\left( {2\cos x + \sin x} \right)^2}\) bằng: A. 5 B. 3 C. 4 D. 2Phương pháp giải - Xem chi tiết Sử dụng các công thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\), \({\sin ^2}x + {\cos ^2}x = 1\). Lời giải chi tiết Ta có:\(\begin{array}{l}A = {\left( {2\sin x - \cos x} \right)^2} + {\left( {2\cos x + \sin x} \right)^2}\\ = \left( {4{{\sin }^2}x - 4\sin x\cos x + {{\cos }^2}x} \right) + \left( {4{{\cos }^2}x + 4\sin x\cos x + {{\sin }^2}x} \right)\\ = 5\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = 5\end{array}\) Đáp án đúng là A.
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |