Giải bài 6 trang 55 sách bài tập toán 12 - Chân trời sáng tạoCho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông cạnh bằng 4. Mặt bên (SAB) là tam giác cân tại (S) có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy. a) Tính góc (alpha ) giữa hai đường thẳng (SD) và (BC); b) Tính góc (beta ) giữa hai mặt phẳng (left( {SAD} right)) và (left( {SCD} right)).
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng 4. Mặt bên \(SAB\) là tam giác cân tại \(S\) có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy. a) Tính góc \(\alpha \) giữa hai đường thẳng \(SD\) và \(BC\); b) Tính góc \(\beta \) giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SCD} \right)\).Phương pháp giải - Xem chi tiết
Gắn vào hệ trục toạ độ và sử dụng công thức góc giữa hai đường thẳng và góc giữa hai mặt phẳng.
Lời giải chi tiết
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |