ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài 4 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

Xác định vị trí tương đối của hai đường thẳng (d) và (d') trong mỗi trường hợp sau: a) (d:left{ begin{array}{l}x = t\y = 1 + 3t\z = 1 - tend{array} right.) và (d':left{ begin{array}{l}x = 2 + 2t'\y = 7 + 6t'\z = - 1 - 2t'end{array} right.); b) (d:frac{{x - 2}}{2} = frac{y}{3} = frac{z}{1}) và (d':frac{x}{4} = frac{y}{6} = frac{z}{2}); c) (d:left{ begin{array}{l}x = 1 + t\y = 1 + t\z = 2 - tend{array} right.) và (d':frac{{x - 2}}{2} = frac{{y - 2}}{

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Xác định vị trí tương đối của hai đường thẳng \(d\) và \(d'\) trong mỗi trường hợp sau: a) \(d:\left\{ \begin{array}{l}x = t\\y = 1 + 3t\\z = 1 - t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 2 + 2t'\\y = 7 + 6t'\\z =  - 1 - 2t'\end{array} \right.\); b) \(d:\frac{{x - 2}}{2} = \frac{y}{3} = \frac{z}{1}\) và \(d':\frac{x}{4} = \frac{y}{6} = \frac{z}{2}\); c) \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 1 + t\\z = 2 - t\end{array} \right.\) và \(d':\frac{{x - 2}}{2} = \frac{{y - 2}}{3} = \frac{{z - 1}}{1}\). b) \(d:\frac{{x - 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{1}\) và \(d':\left\{ \begin{array}{l}x = 2\\y = 1 + t\\z = 7\end{array} \right.\);

Phương pháp giải - Xem chi tiết

Xét vị trí tương đối của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) với: \({\Delta _1}\) đi qua điểm \({M_1}\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} \) và \({\Delta _2}\) đi qua điểm \({M_2}\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} \): • \({\Delta _1}\parallel {\Delta _2}\) nếu \(\left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right] \ne \overrightarrow 0 \end{array} \right.\). • \({\Delta _1}\) cắt \({\Delta _2}\) nếu \(\left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}}  = 0\end{array} \right.\). • \({\Delta _1}\) và \({\Delta _2}\) chéo nhau nếu \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}}  \ne 0\).

Lời giải chi tiết

a) Đường thẳng \(d\) đi qua điểm \(M\left( {0;1;1} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {1;3; - 1} \right)\). Đường thẳng \(d'\) đi qua điểm \(M'\left( {2;7; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow {u'}  = \left( {2;6; - 2} \right)\). Ta có: \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {0;0;0} \right),\overrightarrow {MM'}  = \left( {2;6; - 2} \right)\). \(\left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \left( {0;0;0} \right)\). Vậy \({\Delta _1}\) trùng \({\Delta _2}\). b) Đường thẳng \(d\) đi qua điểm \(M\left( {2;0;0} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2;3;1} \right)\). Đường thẳng \(d'\) đi qua điểm \(M'\left( {0;0;0} \right)\) và có vectơ chỉ phương \(\overrightarrow {u'}  = \left( {4;6;2} \right)\). Ta có: \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {0;0;0} \right),\overrightarrow {MM'}  = \left( { - 2;0;0} \right)\). \(\left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \left( {0; - 2;6} \right)\). Vậy \({\Delta _1}\parallel {\Delta _2}\). c) Đường thẳng \(d\) đi qua điểm \(M\left( {1;1;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {1;1; - 1} \right)\). Đường thẳng \(d'\) đi qua điểm \(M'\left( {2;2;1} \right)\) và có vectơ chỉ phương \(\overrightarrow {u'}  = \left( {2;3;1} \right)\). Ta có: \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {4; - 3;1} \right),\overrightarrow {MM'}  = \left( {1;1; - 1} \right)\). \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'}  = 0\). Vậy \({\Delta _1}\) cắt \({\Delta _2}\). d) Đường thẳng \(d\) đi qua điểm \(M\left( {1;1;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {1;1;1} \right)\). Đường thẳng \(d'\) đi qua điểm \(M'\left( {2;1;7} \right)\) và có vectơ chỉ phương \(\overrightarrow {u'}  = \left( {0;1;0} \right)\). Ta có: \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 1;0;1} \right),\overrightarrow {MM'}  = \left( {1;0;5} \right)\). \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'}  = 4\). Vậy \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

  • 🎃 Giải bài 5 trang 55 sách bài tập toán 12 - Chân trời sáng tạo Tính góc (alpha ) trong mỗi trường hợp sau: a) (alpha ) là góc giữa hai vectơ (overrightarrow a = left( {1;1; - 1} right)) và (overrightarrow b = left( {5;2;7} right)); b) (alpha ) là góc giữa hai đường thẳng (d:left{ begin{array}{l}x = 1 + t\y = 2 - sqrt 3 t\z = 5end{array} right.) và (d':left{ begin{array}{l}x = 1 - sqrt 3 t'\y = 7 + t'\z = 9end{array} right.). c) (alpha ) là góc giữa hai mặt phẳng (left( P right):4x + 2y - z + 9 = 0) và (
  • ꧋ Giải bài 6 trang 55 sách bài tập toán 12 - Chân trời sáng tạo Cho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông cạnh bằng 4. Mặt bên (SAB) là tam giác cân tại (S) có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy. a) Tính góc (alpha ) giữa hai đường thẳng (SD) và (BC); b) Tính góc (beta ) giữa hai mặt phẳng (left( {SAD} right)) và (left( {SCD} right)).
  • 🔴 Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo Người ta muốn dựng một cột ăng-ten trên một sườn đồi. Ăng-ten được dựng thẳng đứng trong không gian \(Oxyz\) với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi \(O\) là gốc cột, \(A\) là điểm buộc dây cáp vào cột ăng-ten và \(M,N\) là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết toạ độ các điểm nói trên lần lượt là \(O\left( {0;0;0} \right),A\left( {0;0;6} \right),M\left( {3; - 4;3} \right),\)\(N\left( { - 5; - 2;2} \right)\). a) Tính độ dài các đoạn dây cáp \(MA\) và \(NA\). b) Tính
  • ౠ Giải bài 3 trang 54 sách bài tập toán 12 - Chân trời sáng tạo Lập phương trình chính tắc của đường thẳng (d) trong mỗi trường hợp sau: a) (d) đi qua điểm (Mleft( {9;0;0} right)) và có vectơ chỉ phương (overrightarrow a = left( {5; - 11;4} right)); b) (d) đi qua hai điểm (Aleft( {6;0; - 1} right),Bleft( {8;3;2} right)); c) (d) có phương trình tham số (left{ begin{array}{l}x = 2t\y = - 1 + 7t\z = 3 - 6tend{array} right.).
  • ♑ Giải bài 2 trang 54 sách bài tập toán 12 - Chân trời sáng tạo Lập phương trình tham số của đường thẳng (d) trong mỗi trường hợp sau: a) (d) đi qua điểm (Aleft( {1; - 5;0} right)) và có vectơ chỉ phương (overrightarrow a = left( {2;0;7} right)); b) (d) đi qua hai điểm (Mleft( {3; - 1; - 1} right),Nleft( {5;1;2} right)).
Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{muse là gì}|𒅌{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|ꦚ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|♓{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|ꦕ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|ꦡ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🙈{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|