Giải bài 6 trang 42 vở thực hành Toán 8Rút gọn các biểu thức:🐼Tổng hợp đề thi học kì 2 lớp 8 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiênQuảng cáo
Đề bài Rút gọn các biểu thức:🐲a) \(\left( {2x-5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\). 🍃b) \(\left( {x + 2y} \right)\left( {{x^2}\;-2xy + 4{y^2}} \right) + \left( {2x-y} \right)\left( {4{x^2}\; + 2xy + {y^2}} \right)\). Phương pháp giải - Xem chi tiết 🍌a) Rút gọn biểu thức bằng cách sử dụng hằng đẳng thức hiệu hai bình phương, bình phương của một tổng. 🐼b) Rút gọn biểu thức bằng cách sử dụng hằng đẳng thức tổng và hiệu hai lập phương. Lời giải chi tiết 🅺a) Ta có \(\left( {2x-5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\) ✱\(\begin{array}{*{20}{l}}{ = {{\left( {2x} \right)}^2}\;-{{\left( {5y} \right)}^{2\;}} + {{\left( {2x} \right)}^2}\; + 2.\left( {2x} \right).\left( {5y} \right) + {{\left( {5y} \right)}^2}}\\{ = 4{x^2}\;-25{y^2}\; + 4{x^2}\; + 20xy + 25{y^2}}\\{ = 8{x^2}\; + 20xy.}\end{array}\) 🍎b) Ta có \(\left( {x + 2y} \right)\left( {{x^2}\;-2xy + 4{y^2}} \right) + \left( {2x-y} \right)\left( {4{x^2}\; + 2xy + {y^2}} \right)\)\(\begin{array}{l} = \left( {x + 2y} \right)\left[ {{x^2}\;-x.2y + {{\left( {2y} \right)}^2}} \right] + \left( {2x-y} \right)\left[ {{{\left( {2x} \right)}^2}\; + 2x.y + {y^2}} \right]\\ = {x^3}\; + {\left( {2y} \right)^3}\; + {\left( {2x} \right)^3}\;-{y^3}\\ = {x^3}\; + 8{y^3}\; + 8{x^3}\;-{y^3}\\ = 9{x^3}\; + 7{y^3}.\end{array}\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |