Giải bài 52 trang 123 sách bài tập toán 9 - Cánh diều tập 1Cho đường tròn tâm O đường kính AB và điểm M di chuyển trên đường tròn (M khác A và B). Vẽ đường tròn (M) tiếp xúc với AB tại H. Từ A và B kẻ hai tiếp tuyến AC, BD của đường tròn (M) lần lượt tại C, D. a) Chứng minh AC + BD không đổi khi M di chuyển trên đường tròn (O). b) Chứng minh CD là tiếp tuyến của đường tròn (O).
Toán - Văn - Anh
Quảng cáo
Đề bài Cho đường tròn tâm O đường kính AB và điểm M di chuyển trên đường tròn (M khác A và B). Vẽ đường tròn (M) tiếp xúc với AB tại H. Từ A và B kẻ hai tiếp tuyến AC, BD của đường tròn (M) lần lượt tại C, D. a) Chứng minh AC + BD không đổi khi M di chuyển trên đường tròn (O). b) Chứng minh CD là tiếp tuyến của đường tròn (O).Phương pháp giải - Xem chi tiết
a) Chứng minh \(BD = BH\) và \(CA = AH\), từ đó tính được \(AC + BD\).
b) Bước 1: Chứng minh C, M, D thẳng hàng.
Bước 2: Chứng minh \(\widehat {AMO} = \widehat {MAC}\left( { = \widehat {MAO}} \right)\).
Bước 3: Chỉ ra \(\widehat {AMO} + \widehat {CMA} = \widehat {CMO} = 90^\circ \), từ đó suy ra \(MO \bot CD\). Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |