Giải bài 5 trang 65 sách bài tập toán 8 - Chân trời sáng tạoCho hình bình hành ABCD có \(AD = 2AB\). Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N.🌺Tổng hợp đề thi học kì 2 lớp 8 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Khoa học tự nhiênQuảng cáo
Đề bài Cho hình bình hành ABCD có \(AD = 2AB\). Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N. Chứng minh rằng: a) Tứ giác MDCN là hình thoi; b) Tam giác EMC là tam giác cân; c) \(\widehat {BAD} = 2\widehat {AEM}\).Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về dấu hiệu nhận biết hình thoi để chứng minh: Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
b) Sử dụng kiến thức về dấu hiệu nhận biết tam giác cân để chứng minh: Tam giác có đường cao đồng thời là đường trung tuyến là tam giác cân.
c) Sử dụng kiến thức về tính chất của hình thoi để chứng minh: Hình thoi có hai đường chéo là các đường phân giác của các góc của hình thoi.
Lời giải chi tiết Xét bài toán phụ 1:🃏 Cho tam giác ABC có M, N lần lượt là trung điểm của cạnh AB, AC. Lấy P đối xứng với M qua N. Chứng minh rằng MN//BC, \(MN = \frac{{BC}}{2}\). Chứng minh:Xét bài toán phụ 2:ℱ Cho hình thang ABCD với AD//BC \(\left( {AD < BC} \right)\). Qua điểm D vẽ đường thẳng DE song song với AB (E thuộc BC); gọi N, Q lần lượt là trung điểm của cạnh DC, DE, M là giao điểm của NQ và AB. Chứng minh rằng \(MA = MB\) Chứng minh:Giải bài 5:
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |