ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài 49 trang 56 sách bài tập toán 11 - Cánh diều

Trong các dãy số (left( {{u_n}} right)) với số hạng tổng quát sau, dãy số tăng là:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số tăng là:

A. \({u_n} = \frac{2}{{{3^n}}}\)                        

B. \({u_n} = \frac{3}{n}\)                

C. \({u_n} = {2^n}\)          

D. \({u_n} = {\left( { - 2} \right)^n}\)

Phương pháp giải - Xem chi tiết

Sử dụng các cách xác định dãy số tăng: Cho dãy số \(\left( {{u_n}} \right)\).

Cách 1:ജ Xét hiệu \(H = {u_{n + 1}} - {u_n}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) tăng khi \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\).

Cách 2:ജ Nếu \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\), xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) tăng khi \(T > 1\) với \(\forall n \in {\mathbb{N}^*}\).

Lời giải chi tiết

a) Ta thấy \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\).Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{2}{{{3^{n + 1}}}}:\frac{2}{{{3^n}}} = \frac{2}{{{3^n}.3}}.\frac{{{3^n}}}{2} = \frac{1}{3}\).Do \(T < 1\), dãy số đã cho không là dãy số tăng.b) Ta thấy \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\).Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{3}{{n + 1}}:\frac{3}{n} = \frac{3}{{n + 1}}.\frac{n}{3} = \frac{n}{{n + 1}} = 1 - \frac{1}{{n + 1}}\).Do \(T = 1 - \frac{1}{{n + 1}} < 1\), dãy số đã cho không là dãy số tăng.c) Ta thấy \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\).Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2\).Do \(T > 1\), dãy số đã cho là dãy số tăng.d) Xét hiệu \(H = {u_{n + 1}} - {u_n} = {\left( { - 2} \right)^{n + 1}} - {\left( { - 2} \right)^n} = {\left( { - 2} \right)^n}\left[ {\left( { - 2} \right) - 1} \right] = \left( { - 3} \right).{\left( { - 2} \right)^n}\)Do với \(\forall n \in {\mathbb{N}^*}\), ta không thể xác định được dấu của \({\left( { - 2} \right)^n}\), do đó ta không thể kết luận được \(H < 0\) hay \(H > 0\).
Do đó dãy số đã cho không là dãy số tăng, cũng không là dãy số giảm.Đáp án đúng là C.

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|💫{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🥀{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|꧟{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|✤{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|𒆙{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🌞{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|