Giải bài 35 trang 19 sách bài tập toán 8 - Cánh diềuPhân tích mỗi đa thức sau thành nhân tử:
Toán - Văn - Anh - Khoa học tự nhiên
Quảng cáo
Đề bài Phân tích mỗi đa thức sau thành nhân tử: a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\) b) \({x^2} - x - {y^2} + y\) c) \({x^3} + 2{x^2} + x - 16x{y^2}\)Phương pháp giải - Xem chi tiết
Sử dụng các hằng đẳng thức, ta có thể phân tích đa thức thành nhân tử bằng cách vận dụng trực tiếp hằng đẳng thức hoặc bằng cách vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung.
Lời giải chi tiết a) Ta có:\(\begin{array}{l}3{x^2} - \sqrt 3 x + \frac{1}{4}\\ = {\left( {\sqrt 3 x} \right)^2} - 2.\sqrt 3 x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2}\\ = {\left( {\sqrt 3 x - \frac{1}{2}} \right)^2}\end{array}\)b) Ta có:\(\begin{array}{l}{x^2} - x - {y^2} + y\\ = \left( {{x^2} - {y^2}} \right) - \left( {x - y} \right)\\ = \left( {x - y} \right)\left( {x + y} \right) - \left( {x - y} \right)\\ = \left( {x - y} \right)\left( {x + y - 1} \right)\end{array}\)c) Ta có:\(\begin{array}{l}{x^3} + 2{x^2} + x - 16x{y^2}\\ = x\left( {{x^2} + 2x + 1 - 16{y^2}} \right)\\ = x\left[ {\left( {{x^2} + 2x + 1} \right) - 16{y^2}} \right]\\ = x\left[ {{{\left( {x + 1} \right)}^2} - 16{y^2}} \right]\\ = x\left( {x - 4y + 1} \right)\left( {x + 4y + 1} \right)\end{array}\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |