Giải bài 3.13 trang 39 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngCho tam giác ABC. Chứng minh rằng:
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Cho tam giác \(ABC.\) Chứng minh rằng: a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\) b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)Phương pháp giải - Xem chi tiết
a) sử dụng định lý sin và công thức tính diện tích tam giác.
b) sử dụng tính chất đường trung tuyến của tam giác.
Lời giải chi tiết a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\)\(\begin{array}{l}VT = \frac{{\cos A}}{{\sin A}} + \frac{{\cos B}}{{\sin B}} + \frac{{\cos C}}{{\sin C}} = \frac{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{{\frac{{2S}}{{bc}}}} + \frac{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}}{{\frac{{2S}}{{ac}}}} + \frac{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}}{{\frac{{2S}}{{ab}}}}\\ = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}} + \frac{{{a^2} + {c^2} - {b^2}}}{{4S}} + \frac{{{a^2} + {b^2} - {c^2}}}{{4S}}\\ = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}} = VP\,\,\left( {dpcm} \right)\end{array}\)b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)\(\begin{array}{l}VT = \left( {\frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}} \right) + \left( {\frac{{{a^2} + {c^2}}}{2} - \frac{{{b^2}}}{4}} \right) + \left( {\frac{{{a^2} + {b^2}}}{2} - \frac{{{c^2}}}{4}} \right)\\ = \frac{{2\left( {{a^2} + {b^2} + {c^2}} \right)}}{2} - \frac{{{a^2} + {b^2} + {c^2}}}{4}\\ = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right) = VP\,\,\left( {dpcm} \right).\end{array}\)
Quảng cáo
PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí! |