ftw bet

Giải bài 3 trang 49 SGK Toán 8 tập 1 - Cánh diều

Cho biểu thức:

꧃Tổng hợp đề thi học kì 2 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên
Quảng cáo

Đề bài

Cho biểu thức: \(B = \left( {\dfrac{{5{{x}} + 2}}{{{x^2} - 10{{x}}}} + \dfrac{{5{{x}} - 2}}{{{x^2} + 10{{x}}}}} \right).\dfrac{{{x^2} - 100}}{{{x^2} + 4}}\) a) Viết điều kiện xác định của biểu thức B b) Rút gọn B và tính giá trị của biểu thức B tại x = 0,1 c) Tìm số nguyên x để biểu thức B nhận giá trị nguyên.

Phương pháp giải - Xem chi tiết

Điều kiện xác định của phân thức là mẫu thức khác 0. Thực hiện quy đồng mẫu các phân thức để tính toán rút gọn biểu thức B.

Lời giải chi tiết

a) Điều kiện xác định của biểu thức B là: \({x^2} - 10{{x}} \ne 0;{x^2} + 10{{x}} \ne 0\) hay \( x \not \in \left\{ {0; -10 ; 10} \right\} \) b) Ta có: \(\begin{array}{l}B = \left( {\dfrac{{5{{x}} + 2}}{{{x^2} - 10{{x}}}} + \dfrac{{5{{x}} - 2}}{{{x^2} + 10{{x}}}}} \right).\dfrac{{{x^2} - 100}}{{{x^2} + 4}}\\B = \left[ {\dfrac{{5{{x}} + 2}}{{x\left( {x - 10} \right)}} + \dfrac{{5{{x  -  }}2}}{{x\left( {x + 10} \right)}}} \right].\dfrac{{\left( {x - 10} \right)\left( {x + 10} \right)}}{{{x^2} + 4}}\\B = \dfrac{{\left( {5{{x}} + 2} \right)\left( {x + 10} \right) + \left( {5{{x}} - 2} \right)\left( {x - 10} \right)}}{{x\left( {x - 10} \right)\left( {x + 10} \right)}}.\dfrac{{\left( {x - 10} \right)\left( {x + 10} \right)}}{{{x^2} + 4}}\\B = \dfrac{{5{{{x}}^2} + 52{{x}} + 20 + 5{{{x}}^2} - 52{{x}} + 20}}{{x\left( {x - 10} \right)\left( {x + 10} \right)}}.\dfrac{{\left( {x - 10} \right)\left( {x + 10} \right)}}{{{x^2} + 4}}\\B = \dfrac{{10\left( {{x^2} + 4} \right).\left( {x - 10} \right)\left( {x + 10} \right)}}{{x\left( {x - 10} \right)\left( {x + 10} \right).\left( {{x^2} + 4} \right)}} = \dfrac{{10}}{x}\end{array}\) Với x = 0,1 ta có: \(B = \dfrac{{10}}{{0,1}} = 100\) c) Để B nguyên thì \(\dfrac{{10}}{x}\) nguyên Suy ra x \( \in \) Ư (10) = \(\left\{ { \pm 1; \pm 2; \pm 5; \pm 10} \right\}\) Mà \( x \not \in \left\{ {0; -10 ; 10} \right\} \) Vậy \(x \in \left\{ { \pm 1; \pm 2; \pm 5} \right\}\) thì B nguyên

Quảng cáo

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|