Giải bài 25 trang 18 sách bài tập toán 8 - Cánh diềuChứng minh biểu thức \(B = {x^5} - 15{x^2} - x + 5\) chia hết cho 5 với mọi số nguyên \(x\)
Toán - Văn - Anh - Khoa học tự nhiên
Quảng cáo
Đề bài Chứng minh biểu thức \(B = {x^5} - 15{x^2} - x + 5\) chia hết cho 5 với mọi số nguyên \(x\)Phương pháp giải - Xem chi tiết
Áp dụng các phương pháp phân tích đa thức thành nhân tử bằng cách nhóm số hạng và đặt nhân tử chung
Lời giải chi tiết Trước hết, ta chứng minh \({x^5} - x \vdots 5\)Ta có: \({x^5} - x = x\left( {{x^4} - 1} \right) = x\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right) = x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)\)Nếu \(x = 5k\) thì \(x \vdots 5\)Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^5} - x \vdots 5\)Nếu \(x = 5k + 1\) thì \(x - 1 = 5k \vdots 5\)Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)Nếu \(x = 5k + 2\) thì \({x^2} + 1 = {\left( {5k + 2} \right)^2} + 1 = 25{k^2} + 20k + 5 \vdots 5\)Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)Nếu \(x = 5k + 3\) thì \({x^2} + 1 = {\left( {5k + 3} \right)^2} + 1 = 25{k^2} + 30k + 10 \vdots 5\)Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)Nếu \(x = 5k + 4\) thì \(x + 1 = 5k + 5 \vdots 5\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |