Giải bài 25 trang 104 sách bài tập toán 11 - Cánh diềuCho hình chóp (S.ABCD) có đáy(ABCD) là hình bình hành.
Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo
Đề bài Cho hình chóp \(S.ABCD\) có đáy\(ABCD\) là hình bình hành. Gọi \(M\), \(N\), \(P\) lần lượt là trung điểm của \(AB\), \(CD\), \(SA\). a) Chứng minh rằng \(SC\) song song với mặt phẳng \(\left( {MNP} \right)\). b) Xác định giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {SCD} \right)\).Phương pháp giải - Xem chi tiết
a) Gọi \(I\) là trung điểm của \(MN\). Từ đó chứng minh được rằng \(I\) là trung điểm của \(AC\), và suy ra \(PI\parallel SC\).
b) Gọi \(Q\) là trung điểm của \(SD\). Ta chứng minh được \(NQ\parallel SC\). Do hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {SCD} \right)\) chứa hai đường thẳng song song \(PI\) và \(SC\), nên giao tuyến của chúng cũng sẽ song song với hai đường thẳng này.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |