ftw bet

Giải bài 23 trang 41 sách bài tập toán 8 - Cánh diều

Rút gọn rồi tính giá trị của biểu thức:

🔴Tổng hợp đề thi học kì 2 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên
Quảng cáo

Đề bài

Rút gọn rồi tính giá trị của biểu thức: a)     \(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}}\) tại \(x = 5;y = 7\) b)    \(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\) tại \(x =  - \frac{1}{2};y = \frac{3}{2}\) c)     \(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\) tại \(x =  - 15;y = 5\)

Phương pháp giải - Xem chi tiết

Áp dụng hằng đẳng thức và phép cộng trừ nhân chia phân thức đại số để rút gọn rồi tính giá trị của biểu thức.

Lời giải chi tiết

a)     Rút gọn biểu thức: \(A \) \( = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}} \) \( = \left( {\frac{{{x^2} + {y^2} - {x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}} \right).\frac{{x - y}}{{2y}} \) \( = \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}.\frac{{x - y}}{{2y}} \) \( = \frac{y}{{x + y}}\) Giá trị của biểu thức \(A\) tại \(x \) \( = 5;y \) \( = 7\) là: \(\frac{7}{{5 + 7}} \) \( = \frac{7}{{12}}\). b)    Rút gọn biểu thức: \(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\\ \) \( = \frac{{2x + y}}{{x\left( {2x - y} \right)}} - \frac{{8y}}{{{{\left( {2x} \right)}^2} - {y^2}}} + \frac{{2x - y}}{{x\left( {2x + y} \right)}}\\ \) \( = \frac{{\left( {2x + y} \right)\left( {2x + y} \right)}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} - \frac{{8xy}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} + \frac{{\left( {2x - y} \right)\left( {2x + y} \right)}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ \) \( = \frac{{{{\left( {2x + y} \right)}^2} - 8xy + {{\left( {2x - y} \right)}^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\\ \) \( = \frac{{4{x^2} + 4xy + {y^2} - 8xy + 4{x^2} - 4xy + {y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ \) \( = \frac{{8{x^2} - 8xy + 2{y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} \) \( = \frac{{2{{\left( {2x - y} \right)}^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} \) \( = \frac{{2\left( {2x - y} \right)}}{{x\left( {2x + y} \right)}}\) Giá trị của biểu thức\(B\) tại \(x \) \( =  - \frac{1}{2};y \) \( = \frac{3}{2}\) là: \(\frac{{2\left( {2. - \frac{1}{2} - \frac{3}{2}} \right)}}{{ - \frac{1}{2}\left( {2.\frac{{ - 1}}{2} + \frac{3}{2}} \right)}} \) \( = 20\) c)     Rút gọn biểu thức: \(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\\ \) \( = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{\left( {x + y} \right)\left( {x - y} \right) + {x^2} + xy + {y^2}}}{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}} \right) - \frac{x}{y}\\ \) \( = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{{x^2} - {y^2} + {x^2} + xy + {y^2}}}{{{x^3} - {y^3}}}} \right) - \frac{x}{y}\\ \) \( = \frac{{{x^3} - {y^3}}}{{xy}}.\frac{{2{x^2} + xy}}{{{x^3} - {y^3}}} - \frac{x}{y}\\ \) \( = \frac{{\left( {{x^3} - {y^3}} \right).x.\left( {2x + y} \right)}}{{xy.\left( {{x^3} - {y^3}} \right)}} - \frac{x}{y}\\ \) \( = \frac{{2x + y}}{y} - \frac{x}{y} \) \( = \frac{{x + y}}{y}\) Giá trị của biểu thức \(C\) tại \(x \) \( =  - 15;y \) \( = 5\) là: \(\frac{{ - 15 + 5}}{5} \) \( =- 2\)

Quảng cáo

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|