ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài 2.14 trang 46 sách bài tập toán 12 - Kết nối tri thức

Cho hình lập phương (ABCD.A'B'C'D') có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a: a) (overrightarrow {AC} cdot overrightarrow {B'D'} ); b) (overrightarrow {BD} cdot overrightarrow {B'C'} ); c) (overrightarrow {A'B'} cdot overrightarrow {AC'} ).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\) có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a:

a) \(\overrightarrow {AC}  \cdot \overrightarrow {B'D'} \) b) \(\overrightarrow {BD}  \cdot \overrightarrow {B'C'} \) c) \(\overrightarrow {A'B'}  \cdot \overrightarrow {AC'} \)

Phương pháp giải - Xem chi tiết

Ý a: Đưa hai vectơ về một gốc, ta thấy hai vectơ vuông góc. Ý b: : Đưa hai vectơ về một gốc, từ đó xác định góc giữa chúng từ áp dụng công thức tích vô hướng để giải. Ý c: Đưa hai vectơ về một gốc, áp dụng kiến thức về định lý ba đường vuông góc trong quá trình tìm cạnh và góc, cuối cùng tính toán, áp dụng công thức để tìm tích vô hướng.

Lời giải chi tiết

a) Ta có \(\overrightarrow {B'D'}  = \overrightarrow {BD} \). Mặt khác \(BD \bot AC\)(do ABCD 🥀 là hình vuông) hay \(\overrightarrow {BD}  \bot \overrightarrow {AC} \),

suy ra \(\overrightarrow {AC}  \cdot \overrightarrow {B'D'}  = \overrightarrow {AC}  \cdot \overrightarrow {BD}  = 0\). b) Ta có \(\overrightarrow {B'C'}  = \overrightarrow {BC} \). Suy ra : \(\overrightarrow {BD}  \cdot \overrightarrow {B'C'}  = \overrightarrow {BD}  \cdot \overrightarrow {BC}  = BD \cdot BC \cdot \cos \left( {\overrightarrow {BD} ,\overrightarrow {BC} } \right) = a\sqrt 2  \cdot a \cdot \cos \widehat {DBC} = {a^2}\sqrt 2  \cdot \cos {45^ \circ } = {a^2}\sqrt 2  \cdot \frac{{\sqrt 2 }}{2} = {a^2}\). c) Ta có \(\overrightarrow {A'B'}  = \overrightarrow {AB} \). Suy ra \(\overrightarrow {A'B'}  \cdot \overrightarrow {AC'}  = \overrightarrow {AB}  \cdot \overrightarrow {AC'}  = AB \cdot AC' \cdot \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right){\rm{       }}\left( 1 \right)\). Ta sẽ tính cạnh \(AC'\) và xác định góc \(\left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right)\). Ta có \(CB \bot AB\) suy ra \(C'B \bot AB\), do đó tam giác \(ABC'\) vuông tại \(B\). Xét tam giác \(ABC'\) có \(AC' = \sqrt {A{B^2} + B{{C'}^2}}  = \sqrt {{a^2} + 2{a^2}}  = a\sqrt 3 \). Lại có \(\left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right) = \widehat {BAC'}\) suy ra \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right) = \cos \widehat {BAC'} = \frac{{AB}}{{AC'}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }}\). Thay \(AC' = a\sqrt 3 \) và \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right) = \frac{1}{{\sqrt 3 }}\) vào \(\left( 1 \right)\) ta được: \(\overrightarrow {A'B'}  \cdot \overrightarrow {AC'}  = AB \cdot AC' \cdot \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC'} } \right) = a \cdot a\sqrt 3  \cdot \frac{1}{{\sqrt 3 }} = {a^2}\).

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{muse là gì}|💜{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|𝓀{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|⛄{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🍸{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|🌼{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🥃{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|