Giải bài 2 trang 56 Chuyên đề học tập Toán 10 – Cánh diềuTrong mặt phẳng tọa độ Oxy, cho hypebol có phương trình chính tắc là \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1\)
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Quảng cáo
Đề bài Trong mặt phẳng tọa độ Oxy, cho hypebol có phương trình chính tắc là \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1\) a) Xác định tọa độ các đỉnh, tiêu điểm, tiêu cự, độ dài trục thực của hypebol b) Xác định phương trình các đường tiệm cận của hypebol và vẽ hypebol trên.Phương pháp giải - Xem chi tiết
Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:
+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)
+ Các đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right)\)
+ Tiêu cự: \(2c = 2\sqrt {{a^2} + {b^2}} \)
+ Độ dài trục thực: \(2a\), độ dài trục ảo: \(2b\)
+ Hai đường tiệm cận của hypebol (H) lần lượt có phương trình \(y = - \frac{b}{a}x,y = \frac{b}{a}x\)
Lời giải chi tiết a) Ta có: \(a = 2,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{2^2} + {1^2}} = \sqrt 5 \)+ Tọa độ các đỉnh của hypebol là \({A_1}\left( { - 2;0} \right),{A_2}\left( {2;0} \right)\)+ Tọa độ các tiêu điểm của hypebol là \({F_1}( - \sqrt 5 ;0),{F_2}(\sqrt 5 ;0)\)+ Tiêu cự của hypebol là \(2c = 2\sqrt 5 \)+ Độ dài trục thực: \(2a = 4\), độ dài trục ảo: \(2b = 2\)b) Ta có phương trình các đường tiệm cận của hypebol (H) lần lượt có phương trình \(y = - \frac{1}{2}x,y = \frac{1}{2}x\)Vẽ hypebol (H):Ta thấy \(a = 2,b = 1\). (H) có các đỉnh \({A_1}\left( { - 2;0} \right),{A_2}\left( {2;0} \right)\)
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |