Giải bài 2 trang 40 Chuyên đề học tập Toán 11 Chân trời sáng tạoCho ∆ABC đều có cạnh bằng 2. Qua ba phép biến hình liên tiếp: Phép tịnh tiến, phép quay \({Q_{\left( {B,{\rm{ }}60^\circ } \right)}},\)🍎Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Đề bài Cho ∆ABC đều có cạnh bằng 2. Qua ba phép biến hình liên tiếp: Phép tịnh tiến, phép quay \({Q_{\left( {B,{\rm{ }}60^\circ } \right)}},\) phép vị tự \({V_{\left( {A,{\rm{ }}3} \right)}},\)∆ABC biến thành \(\Delta {A_1}{B_1}{C_1}.\) Tìm diện tích \(\Delta {A_1}{B_1}{C_1}.\)Phương pháp giải - Xem chi tiết
\({S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}BC.BA.\sin B = \frac{1}{2}CA.CB.\sin C\)
Lời giải chi tiết Vì \(\Delta \)ABC và \(\Delta \)A1B1C1ꦡ đồng dạng với nhau nên \(\widehat {{B_1}{A_1}{C_1}} = \widehat {BAC} = {60^o}\) Ta có \({S_{\Delta {A_1}{B_1}{C_1}}} = \frac{1}{2}{A_1}{B_1}.{A_1}{C_1}.\sin \widehat {{B_1}{A_1}{C_1}} = \frac{1}{2}.6.6.\sin {60^o} = 9\sqrt 3 \)Vậy diện tích \(\Delta {A_1}{B_1}{C_1}\) bằng \(9\sqrt 3 \).
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |