Giải bài 1.66 trang 36 sách bài tập toán 12 - Kết nối tri thứcCho hàm số (y = frac{{m{x^2} + left( {2m - 1} right)x - 1}}{{x + 2}}) với (m) là tham số. a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi (m > 0). b) Khảo sát và vẽ đồ thị (left( H right)) của hàm số đã cho với (m = 1). c) Giả sử (Delta ) là tiếp tuyến của đồ thị (left( H right)) tại điểm (M in left( H right)) bất kì. Chứng minh rằng nếu (Delta ) cắt tiệm cận đứng và tiệm cận xiên của (left( H right)) tại A và B thì M luôn là trung điểm củaꦅTổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Cho hàm số \(y = \frac{{m{x^2} + \left( {2m - 1} \right)x - 1}}{{x + 2}}\) với \(m\) là tham số. a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi \(m > 0\). b) Khảo sát và vẽ đồ thị \(\left( H \right)\) của hàm số đã cho với \(m = 1\). c) Giả sử \(\Delta \) là tiếp tuyến của đồ thị \(\left( H \right)\) tại điểm \(M \in \left( H \right)\) bất kì. Chứng minh rằng nếu \(\Delta \) cắt tiệm cận đứng và tiệm cận xiên của \(\left( H \right)\) tại A và B thì M luôn là trung điểm của đoạn AB.Phương pháp giải - Xem chi tiết
Ý a: Xét dấu đạo hàm và lập bảng biến thiên.
Ý b: Khảo sát và vẽ đồ thị hàm số \(\left( H \right)\).
Ý c: Giả sử điểm M thuộc đồ thị biểu diễn tọa độ theo một tham số, từ đó viết phương trình tiếp tuyến tại M của đồ thị phụ thuộc tham số sau đó giải để tìm được tọa độ A và B theo tham số, từ đó tính toán tọa độ trung điểm sẽ suy ra điều phải chứng minh.
Lời giải chi tiết a) Ta có \(y' = \frac{{\left( {2mx + 2m - 1} \right)\left( {x + 2} \right) + m{x^2} + \left( {2m - 1} \right)x - 1}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{m{x^2} + 4mx + 4m - 1}}{{{{\left( {x + 2} \right)}^2}}}\). Khi đó \(y' = 0 \Leftrightarrow m{x^2} + 4mx + 4m - 1 = 0{\rm{ }}\left( {x \ne - 2} \right)\). Xét phương trình \(m{x^2} + 4mx + 4m - 1 = 0{\rm{ }}\) Ta có \(\Delta ' = {\left( {2m} \right)^2} - 4{m^2} + m = m\). Do đó nếu \(m > 0\) thì phương trình luôn có hai nghiệm phân biệt: \({x_1} = \frac{{ - 2m - \sqrt m }}{m} = - 2 - \frac{1}{{\sqrt m }}\); \({x_2} = \frac{{ - 2m + \sqrt m }}{m} = - 2 + \frac{1}{{\sqrt m }}\). Lập bảng biến thiên:
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |