ftw bet

Giải bài 16 trang 14 sách bài tập toán 11 - Cánh diều

Nếu \(\sin \alpha = \frac{1}{{\sqrt 3 }}\) với \(0 < \alpha < \frac{\pi }{2}\) thì giá trị của \(\cos \left( {\alpha + \frac{\pi }{3}} \right)\) bằng:

☂Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo

Đề bài

Nếu \(\sin \alpha  = \frac{1}{{\sqrt 3 }}\) với \(0 < \alpha  < \frac{\pi }{2}\) thì giá trị của \(\cos \left( {\alpha  + \frac{\pi }{3}} \right)\) bằng: A. \(\frac{{\sqrt 6 }}{6} - \frac{1}{2}\)                         B. \(\sqrt 6  - 3\)             C. \(\frac{{\sqrt 6 }}{6} - 3\)                           D. \(\sqrt 6  - \frac{1}{2}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) và điều kiện \(0 < \alpha  < \frac{\pi }{2}\) để tính \(\cos \alpha \). Sử dụng công thức \(\cos \left( {a + b} \right) = \cos a.\cos b - \sin a.\sin b\)

Lời giải chi tiết

Do \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( {\frac{1}{{\sqrt 3 }}} \right)^2} = \frac{2}{3} \Rightarrow \cos \alpha  =  \pm \frac{{\sqrt 6 }}{3}\)Vì \(0 < \alpha  < \frac{\pi }{2} \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt 6 }}{3}\)Ta có \(\cos \left( {\alpha  + \frac{\pi }{3}} \right) = \cos \alpha .\cos \frac{\pi }{3} - \sin \alpha .\sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \frac{1}{{\sqrt 3 }}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 6 }}{6} - \frac{1}{2}\)Đáp án đúng là A.

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|