Giải bài 14 trang 86 SGK Toán 8 tập 2– Chân trời sáng tạoCho tam giác
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Cho tam giác \(ABC\)nhọn có hai đường cao \(BE,CF\) cắt nhau tại \(H\). Chứng minh rằng a) \(\Delta AEB\backsim\Delta AFC\). b) \(\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\). c) \(\Delta HEF\backsim\Delta HCB\)Video hướng dẫn giải Phương pháp giải - Xem chi tiết
- Nếu tam giác vuông này có một góc nhọn bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
- Nếu \(\Delta ABC\backsim\Delta A'B'C'\) thì \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = k\).
- Hai tam giác đồng dạng có các góc tương ứng bằng nhau.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |