Giải bài 1.36 trang 14 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngHãy viết các tập hợp sau bằng cách liệt kê các phần tử của tập hợp.꧟Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...Quảng cáo
Đề bài Hãy viết các tập hợp sau bằng cách liệt kê các phần tử của tập hợp. \(A = \left\{ {\left. {x \in \mathbb{Q}} \right|\left( {2x + 1} \right)\left( {{x^2} + x - 1} \right)\left( {2{x^2} - 3x + 1} \right) = 0} \right\};\) \(B = \left\{ {\left. {x \in \mathbb{N}} \right|{x^2} > 2\,\, \rm{và} \,\,x < 4} \right\}\)Phương pháp giải - Xem chi tiết
- Giải phương trình \(\left( {2x + 1} \right)\left( {{x^2} + x - 1} \right)\left( {2{x^2} - 3x + 1} \right) = 0\) và \(\left\{ {\begin{array}{*{20}{c}}{{x^2} > 2}\\{x < 4}\end{array}.} \right.\)
- Liệt kê các phần tử thỏa mãn tập hợp A và tập hợp B.
Lời giải chi tiết +) Giải phương trình: \(\left( {2x + 1} \right)\left( {{x^2} + x - 1} \right)\left( {{x^2} - 3x + 1} \right) = 0\)\( \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{2x + 1 = 0}\\{{x^2} + x - 1 = 0}\\{2{x^2} - 3x + 1 = 0}\end{array}}\right. \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = \frac{{ - 1}}{2}}\\{x = \frac {-1 + \sqrt 5}{2}}\\{x = \frac {-1 - \sqrt 5}{2}}\\{x = 1}\\{x = \frac{1}{2}}\end{array}} \right.\)Vì \(x \in \mathbb{Q}\) nên chỉ có \(x = \frac{{ - 1}}{2},x = \frac{1}{2}\) và \(x = 1\) thỏa mãn.\( \Rightarrow \,\,A = \left\{ {\frac{{ - 1}}{2};\frac{1}{2};1} \right\}\)+) Giải hệ phương trình\(\begin{array}{*{20}{l}}
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |