Giải bài 13 trang 30 SBT toán 10 - Cánh diềuMiền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình:
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Quảng cáo
Đề bài Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình:
Phương pháp giải - Xem chi tiết
Lời giải chi tiết Chọn A+) Gọi d1💦 là đường thẳng đi qua hai điểm A và D. Đường thẳng cắt hai trục tọa độ tại hai điểm (– 2; 0) và (0; 2) nên phương trình đường thẳng d là: \(\frac{x}{{ - 2}} + \frac{y}{2} = 1 \Leftrightarrow x - y = - 2\) Lấy điểm \(O\left( {0;0} \right)\) ta có \(0 - 0 = 0 > - 2\)Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình \(x - y \ge - 2\)+) Gọi \({d_2}\) là đường thẳng đi qua hai điểm A và D. Đường thẳng cắt hai trục tọa độ tại hai điểm \(\left( {4;0} \right)\) và \(\left( {0;4} \right)\)nên phương trình đường thẳng d là: \(\frac{x}{4} + \frac{y}{4} = 1 \Leftrightarrow x + y = 4\)Lấy điểm \(O\left( {0;0} \right)\) ta có \(0 + 0 = 0 < 4\)Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình \(x + y \le 4\)+) Gọi d3💧 là đường thẳng đi qua hai điểm B và C. Đường thẳng cắt hai trục tọa độ tại hai điểm (2; 0) và (0; – 2) nên phương trình đường thẳng d là: \(\frac{x}{2} + \frac{y}{{ - 2}} = 1 \Leftrightarrow x - y = 2\) Lấy điểm \(O\left( {0;0} \right)\) ta có \(0 - 0 = 0 < 2\)Gọi d4♐ là đường thẳng đi qua hai điểm D và C. Đường thẳng cắt hai trục tọa độ tại hai điểm (– 1; 0) và (0; – 1) nên phương trình đường thẳng d là: \(\frac{x}{{ - 1}} + \frac{y}{{ - 1}} = 1 \Leftrightarrow x + y = - 1\) Lấy điểm \(O\left( {0;0} \right)\) ta có 0 + 0 =0 > -1Mà điểm O thuộc miền nghiệm cuẩ hệ bất phương trình nên ta có bất phương trình \(x + y \ge - 1\)Từ đó ta có hệ bất phương trình sau: \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge - 2}\\{x + y \le 4}\\{x - y \le 2}\\{x + y \ge - 1}\end{array}} \right.\)Chọn A
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |