Giải bài 12 trang 12 sách bài tập toán 8 - Cánh diềuChứng minh rằng biểu thức (P = left( {2y - x} right)left( {x + y} right) + xleft( {y - x} right) - 2yleft( {x + 5y} right) - 1)
Toán - Văn - Anh - Khoa học tự nhiên
Quảng cáo
Đề bài Chứng minh rằng biểu thức \(P = \left( {2y - x} \right)\left( {x + y} \right) + x\left( {y - x} \right) - 2y\left( {x + 5y} \right) - 1\) luôn nhận giá trị âm với mọi giá trị của biến \(x\) và \(y\).Phương pháp giải - Xem chi tiết
Áp dụng các phương pháp cộng, trừ, nhân, chia đa thức để rút gọn biểu thức sau đó chứng minh biểu thức luôn nhận giá trị âm.
Lời giải chi tiết Ta có: \(\begin{array}{l}P = \left( {2y - x} \right)\left( {x + y} \right) + x\left( {y - x} \right) - 2y\left( {x + 5y} \right) - 1\\ = 2xy + 2{y^2} - {x^2} - xy + xy - {x^2} - 2xy - 10{y^2} - 1\\ = - 2{x^2} - 8{y^2} - 1\end{array}\)Do \({x^2} \ge 0,{y^2} \ge 0\) nên \( - 2{x^2} - 8{y^2} - 1 < 0\) với mọi giá trị của biến \(x,y\).Vậy \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\) và \(y\).
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |