Giải bài 1.18 trang 15 sách bài tập toán 12 - Kết nối tri thứcHai nguồn nhiệt đặt cách nhau \(s\) mét, một nguồn có cường độ \(a\) đặt ở điểm A và một nguồn có cường độ \(b\) đặt ở điểm B. Cường độ nhiệt tại điểm P nằm trên đoạn thẳng nối A và B được tính theo công thức \(I = \frac{a}{{{x^2}}} + \frac{b}{{{{\left( {s - x} \right)}^2}}},\) Trong đó \(x\) (m) là khoảng cách giữa P và A. Tại điểm nào giữa A và B, nhiệt độ sẽ thấp nhất?📖Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Hai nguồn nhiệt đặt cách nhau \(s\) mét, một nguồn có cường độ \(a\) đặt ở điểm A và một nguồn có cường độ \(b\) đặt ở điểm B. Cường độ nhiệt tại điểm P nằm trên đoạn thẳng nối A và B được tính theo công thức \(I = \frac{a}{{{x^2}}} + \frac{b}{{{{\left( {s - x} \right)}^2}}},\) Trong đó \(x\) (m) là khoảng cách giữa P và A. Tại điểm nào giữa A và B, nhiệt độ sẽ thấp nhất?Phương pháp giải - Xem chi tiết
Xét hàm số \(I = \frac{a}{{{x^2}}} + \frac{b}{{{{\left( {s - x} \right)}^2}}},{\rm{ }}0 \le x \le s\). Yêu cầu bài toán tương đương tìm \(x\) để hàm số đạt giá trị nhỏ nhất. Tính đạo hàm, lập bảng biến thiên của hàm số và đưa ra kết luận.
Lời giải chi tiết Xét hàm số \(I = \frac{a}{{{x^2}}} + \frac{b}{{{{\left( {s - x} \right)}^2}}},{\rm{ }}0 \le x \le s\). Ta cần tìm \(x\) để hàm số đạt giá trị nhỏ nhất. Ta có: \(I' = - \frac{{2a}}{{{x^3}}} + \frac{{2b}}{{{{\left( {s - x} \right)}^3}}} = \frac{{2\left[ {b{x^3} - a{{\left( {s - x} \right)}^3}} \right]}}{{{x^3}{{\left( {s - x} \right)}^3}}},{\rm{ }}0 \le x \le s\) Khi đó \(I' = 0 \Leftrightarrow \frac{{2\left[ {b{x^3} - a{{\left( {s - x} \right)}^3}} \right]}}{{{x^3}{{\left( {s - x} \right)}^3}}} = 0 \Leftrightarrow 2\left[ {b{x^3} - a{{\left( {s - x} \right)}^3}} \right] = 0 \Leftrightarrow \frac{x}{{s - x}} = \frac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}} \Leftrightarrow x = \frac{{s\sqrt[3]{a}}}{{\sqrt[3]{a} + \sqrt[3]{b}}}\). Lập bảng biến thiên của hàm số:
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |