ftw bet

Giải Bài 11 trang 36 sách bài tập toán 7 tập 1 - Chân trời sáng tạo

Người ta chứng minh được rằng: - Nếu một phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân hữu hạn.

🧜Tổng hợp đề thi học kì 2 lớp 7 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên...
Quảng cáo

Đề bài

Người ta chứng minh được rằng: - Nếu một phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân hữu hạn. - Nếu một phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân vô hạn tuần hoàn.

Hãy tìm số thập phân vô hạn tuần hoàn trong các số hữu tỉ sau: \(\dfrac{7}{{20}}\);\(\dfrac{{25}}{6}\)

Phương pháp giải - Xem chi tiết

﷽Ta lấy tử số chia cho mẫu số rồi tìm số thập phân vô hạn trong các số hữu tỉ đã cho

Lời giải chi tiết

Xét phân số \(\dfrac{7}{{20}}\) đã tối giản, ta có mẫu số của phân số là 20 = 22💯.5 có ước nguyên tố là 2 và 5 nên phân số này được viết dưới dạng số thập phân hữu hạn.

Xét phân số \(\dfrac{{25}}{6}\)♏ đã tối giản, ta có mẫu số của phân số là 6 = 2.3 có ước nguyên tố là 2 và 3 nên phân số này được viết dưới dạng số thập phân vô hạn tuần hoàn.

Vậy số thập phân vô hạn tuần hoàn là \(\dfrac{{25}}{6}\)  

Quảng cáo

Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|