Đề thi giữa kì 2 Toán 7 - Đề số 2 - Cánh diềuTải về I. TRẮC NGHIỆM ( 3 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Toán - Văn - Anh - Khoa học tự nhiên...
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tải về
Đề bài I. TRẮC NGHIỆM ( 3 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.Câu 1. Biểu đồ hình quạt tròn dùng để: A. So sánh số liệu của hai đối tượng cùng loại. B. So sánh các thành phần trong toàn bộ dữ liệu. C. ✤Biểu diễn sự thay đổi của một đại lượng theo thời gian. D. Biểu diễn sự chênh lệch số liệu giữa các đối tượng. Câu 2. ꦉSố học sinh đăng ký học bổ trợ các Câu lạc bộ Toán, Ngữ văn, Tiếng anh của lớp 7 của một trường được biểu diễn qua biểu đồ hình quạt tròn như sau: Tính số phần trăm học sinh đăng ký môn Toán là bao nhiêu? A. 40% B. 37,5% C. 30% D. 35% Câu 3. 🎃Đâu không là một yếu tố của một biểu đồ đoạn thẳng? A. Trục ngang B. Các đoạn thẳng C. Đường chéo D. Tên biểu đồ Câu 4. Tìm số đo của \(x\) trong hình vẽ dưới đây? A. \(x = {55^0}\) B. \(x = {75^0}\) C. \(x = {60^0}\) D. \(x = {70^0}\) Câu 5.𝓀 Cho hai tam giác \(ABC\) và \(MNP\) có \(\angle ABC = \angle MNP,\angle ACB = \angle MPN\). Cần thêm một điều kiện để tam giác \(ABC\) và tam giác \(MNP\) bằng nhau theo trường hợp góc – cạnh – góc là: A. \(AC = MP\) B. \(AB = MN\) C. \(BC = NP\) D. \(AC = MN\) Câu 6. Hệ số tự do của đa thức M = -8x2 – 4x + 3 – 2x5 là A. -2; B. 4; C. 3; D. 5. Câu 7. Cho hai đa thức P(x) = 6x3 − 3x2 − 2x + 4 và G(x) = 5x2 − 7x + 9. Giá trị P(x) − G(x) bằng A. x2 − 9x +13; B. 6x3 − 8x2 + 5x −5; C. x3 − 8x2 + 5x −5; D. 5x3 − 8x2 + 5x +13. Câu 8. Trong các giá trị sau đây, đâu là nghiệm của đa thức 5x2 − 3x – 2? A. \(x = 1\); B. \(x = - 1\); C. \(x = \dfrac{2}{5}\); D. \(x = \dfrac{{ - 2}}{5}\). Câu 9.꧅ Cho tam giác MNP có: \(\widehat N = 70^\circ ;\widehat P = 55^\circ \). Khẳng định nào sau đây là đúng ? A. MP < MN; B. MP = MN; C. MP > MN; D. Không đủ dữ kiện so sánh. Câu 10.🎃 Cho tam giác MNP có: MN < MP, MD ⊥ NP. Khẳng định nào sau đây là đúng? A. DN = DP; B. MD < MP; C. MD > MN; D. MN = MP. Câu 11.﷽ Bộ ba độ dài đoạn thẳng nào sau đây không thể tạo thành một tam giác? A. 18cm; 28cm; 10cm; B. 5cm; 4cm; 6cm; C. 15cm; 18cm; 20cm; D. 11cm; 9cm; 7cm. Câu 12.💯 Cho G là trọng tâm tam giác MNP có trung tuyến MK. Khẳng định nào sau đây là đúng? A. \(\dfrac{{MG}}{{GK}} = \dfrac{1}{2}\); B. \(\dfrac{{MG}}{{MK}} = \dfrac{1}{3}\) ; C. \(\dfrac{{KG}}{{MK}} = \dfrac{1}{3}\); D. \(\dfrac{{MG}}{{MK}} = \dfrac{2}{3}\). II. PHẦN TỰ LUẬN (7,0 điểm) Bài 1. (2 điểm)﷽ Tốc độ tăng trưởng Diện tích, Năng suất, Sản lượng lúa của nước ta, giai đoạn 1990 – 2014 được biểu diễn qua biểu đồ dưới đây:
Bài 2. (1,5 điểm)﷽ Cho hai đa thức: \(P\left( x \right) = {\rm{ }}{x^3}\; - 2{x^2} + x - 2\); \(Q\left( x \right) = 2{x^3}\; - 4{x^2} + 3x - 6\) a) Tính \(P(x) - Q(x)\) b) Chứng tỏ rằng x = 2 là nghiệm của cả hai đa thức P(x) và Q(x).Bài 3. (3,0 điểm)ꦗ Cho \(\Delta ABC\) vuông tại \(A\), đường trung tuyến \(AM\). Trên tia đối của tia \(MA\) lấy điểm \(D\) sao cho \(DM = MA\). a) Chứng minh \(\Delta AMB = \Delta DMC\).b) Trên tia đối của tia \(CD\), lấy điểm \(I\) sao cho \(CI = CA\), qua điểm \(I\) vẽ đường thẳng song song với \(AC\) cắt \(AB\) tại \(E\). Chứng minh \(\Delta ACE = \Delta ICE\), từ đó suy ra \(\Delta ACE\) là tam giác vuông cân. Bài 4. (0,5 điểm) Cho đa thức \(f\left( x \right)\) thỏa mãn \(f\left( x \right) + x.f\left( { - x} \right) = x + 1\) với mọi giá trị của \(x\). Tính \(f\left( 1 \right)\). Lời giải I. Trắc nghiệm
Câu 1. Phương pháp: Ứng dụng của biểu đồ hình quạt tròn. Cách giải: Biểu đồ hình quạt tròn dùng để so sánh các thành phần trong toàn bộ dữ liệu. Chọn B. Câu 2. Phương pháp: Đọc và phân tích dữ liệu của biểu đồ hình quạt tròn.Cách giải: Số phần trăm học sinh đăng ký môn Toán là: \(100\% - 32,5\% - 30\% = 37,5\% \)Chọn B. Câu 3. Phương pháp: Nhận ra các thành phần của biểu đồ đoạn thẳng. Cách giải: Trục ngang, các đonạ thẳng, tên biểu đồ đều là các yếu tố của một biểu đồ đoạn thẳng.Trong biểu đồ đoạn thẳng, không có yếu tố đường chéo. Chọn C. Câu 4. Phương pháp: Vận dụng tính chất của tam giác cân: Tam giác cân có hai góc ở đáy bằng nhau.Áp dụng định lý tổng ba góc trong tam giác: Tổng số đo ba góc trong một tam giác bằng \({180^0}\). Cách giải: Tam giác \(ABC\) có: \(AB = AC\) nên \(ABC\) là tam giác cân Suy ra \(\angle B = \angle C = {55^0}\) (tính chất của tam giác cân) Xét tam giác \(ABC\) có: \(\angle A + \angle B + \angle C = {180^0}\) (định lý tổng ba góc trong một tam giác) \(\begin{array}{l} \Rightarrow \angle A + {55^0} + {55^0} = {180^0}\\ \Rightarrow x + {110^0} = {180^0}\\ \Rightarrow x = {180^0} - {110^0}\\ \Rightarrow x = {70^0}\end{array}\) Vậy \(x = {70^0}\)Chọn D. Câu 5. Phương pháp: Vận dụng định lý (trường hợp bằng nhau góc – cạnh – góc (g.c.g)): Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau. Cách giải: Để \(\Delta ABC = \Delta MNP\left( {g.c.g} \right)\) thì cần thêm điều kiện \(BC = NP\). Chọn C. Câu 6. Phương pháp Mô tảCách giải: Tổng lập phương của hai số x và y là (x + y)3 Chọn D. Câu 7. Ta có: P(x) − G(x) = (6x3 − 3x2 − 2x + 4) − (5x2 − 7x + 9) = 6x3 − 3x2 − 2x + 4 − 5x2 + 7x − 9 = 6x3 + (−3x2 − 5x2) + (−2x + 7x) + (4 − 9) = 6x3 − 8x2 + 5x − 5. Vậy P(x) − G(x) = 6x3 − 8x2 + 5x −5. Chọn B. Câu 8. Phương pháp Thay lần lượt các giá trị của x vào đa thức. Khi x = a, đa thức có giá trị bằng 0 thì a là nghiệm của đa thức.Lời giải Thay \(x = \dfrac{{ - 2}}{5}\)vào đa thức 5x2 − 3x – 2, ta có: \(5.{\left( {\dfrac{{ - 2}}{5}} \right)^2} - 3.\dfrac{{ - 2}}{5} - 2 = 0\) Do đó, \(x = \dfrac{{ - 2}}{5}\) là nghiệm của đa thức 5x2 − 3x – 2. Chọn D. Câu 9. Phương pháp: 𝕴Áp dụng định lí tổng ba góc trong tam giác, tính góc M. Dựa vào quan hệ giữa cạnh và góc đối diện trong tam giác. Cách giải: Chọn B. Câu 10. Phương pháp: Sử dụng mối quan hệ đường xiên và hình chiếu. Sử dụng quan hệ đường vuông góc và đường xiên.Cách giải: Do đó, ND < PD. Ta có: MD < MP (đường vuông góc nhỏ hơn đường xiên)Chọn B Câu 11. Phương pháp: Bất đẳng thức tam giác: Kiểm tra tổng độ dài 2 cạnh nhỏ hơn có lớn hơn độ dài cạnh lớn nhất không. Nếu không thì bộ 3 độ dài đó không tạo được thành tam giác. Cách giải: Vì 18 + 10 = 28 nên không thỏa mãn bất đẳng thức tam giác. Do đó, bộ ba độ dài đoạn thẳng 18 cm; 28 cm; 10 cm không thể tạo thành một tam giác.Chọn A. Câu 12. Phương pháp Nếu \(\Delta ABC\) có trung tuyến \(AM\) và trọng tâm \(G\) thì \(AG = \dfrac{2}{3}AM\)Lời giải \(MG = \dfrac{2}{3}MK;GK = \dfrac{1}{3}MK;MG = 2GK\) Chọn C. II. PHẦN TỰ LUẬN (7,0 điểm) Bài 1. (2 điểm) Phương pháp: Phân tích dữ liệu biểu đồ đoạn thẳng.Cách giải: a)
Vậy năng suất lúa của nước ta năm 2014 đã tăng 27% so với năm 2005 Bài 2. (1,5 điểm) Cách giải: a) Ta có P(x) – Q(x) = (x3 – 2x2 + x – 2) – (2x3 – 4x2 + 3x – 6) = x3 – 2x2 + x – 2 – 2x3 + 4x2 – 3x + 6 = (x3 – 2x3) + (4x2 – 2x2) + (x – 3x) + (6 – 2) = – x3– 2x2 – 2x +4. Vậy P(x) – Q(x) = – x3– 2x2 – 2x +4. b) Thay x = 2 vào đa thức P(x), ta có:P(2) = 23 – 2 . 22 + 2 – 2 = 8 – 2 . 4 + 0 = 8 – 8 = 0; Thay x = 2 vào đa thức Q(x), ta có:Q(2) = 2 . 23 – 4 . 22 + 3 . 2 – 6 = 2 . 8 – 4 . 4 + 6 – 6 = 16 – 16 + 0 = 0. Vậy x = 2 là nghiệm của cả hai đa thức P(x) và Q(x).Bài 3. (3,0 điểm) Phương pháp: a) Ta sẽ chứng minh: \(\Delta AMB = \Delta DMC\left( {c.g.c} \right)\) b) Ta sẽ chứng minh: \(\angle EIC = {90^0}\), từ đó chứng minh được \(\Delta ACE = \Delta ICE\)(cạnh huyền – cạnh góc vuông) \( \Rightarrow \angle ACE = \angle ICE\) (hai góc tương ứng) \( \Rightarrow \Delta ACE\) vuông cân tại \(A\left( {\angle EAC = {{90}^0}} \right)\)Cách giải: Bài 4. (0,5 điểm) Phương pháp: Xét với \(x = - 1\), ta tìm được mối liên hệ của \(f\left( { - 1} \right)\) và \(f\left( 1 \right)\) Xét với \(x = 1\), ta tìm được \(f\left( 1 \right)\).Cách giải: + Với \(x = - 1\), ta có: \(f\left( { - 1} \right) + \left( { - 1} \right).f\left( 1 \right) = - 1 + 1\) \(\begin{array}{l} \Rightarrow f\left( { - 1} \right) - f\left( 1 \right) = 0\\ \Rightarrow f\left( { - 1} \right) = f\left( 1 \right)\end{array}\) + Với \(x = 1\), ta có: \(f\left( 1 \right) + 1.f\left( { - 1} \right) = 1 + 1\) \( \Rightarrow f\left( 1 \right) + f\left( { - 1} \right) = 2\) Suy ra, \(f\left( 1 \right) + f\left( 1 \right) = 2\) \(\begin{array}{l} \Rightarrow 2f\left( 1 \right) = 2\\ \Rightarrow f\left( 1 \right) = 1\end{array}\) Vậy \(f\left( 1 \right) = 1\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |