Trong Hình 37, cho (O) là giao điểm hai đường chéo (AC) và (BD) của tứ giác (ABCD). Kẻ một đường thẳng tùy ý đi qua (O) và cắt cạnh (AB) tại (M,CD) tại (N).
Xem lời giải ও
Biết tam giác \(ABC\) đồng dạng với tam giác \(A'B'C'\) theo tỉ số đồng dạng là \(k\). Hỏi tỉ số chu vi của tam giác \(ABC\) và tam giác \(A'B'C'\) bằng bao nhiêu?
Xem lời giải𝓡
Cho hình bình hành \(ABCD\). Đường phân giác của góc \(A\) cắt \(BD\) tại \(E\), đường phân giác của góc \(B\) cắt \(AC\) tại \(F\). Chứng minh:
🐲 𝔍 Xem lời giải
Cho tam giác \(ABC\) cân tại \(A\), có \(M\) là trung điểm của \(BC\). Kể tia \(Mx\) song song với \(AC\) cắt \(AB\) tại \(E\) và tia \(My\) song song với \(AB\) cắt \(AC\) tại \(F\). Chứng minh:
🍬 ℱ Xem lời giải
Cho tam giác \(ABC\). Một đường thẳng \(d\) song song với \(BC\) và cắt các cạnh \(AB,AC\) của tam giác đó lần lượt tại \(M,N\) với \(\frac{{AM}}{{AB}} = \frac{1}{3}\) và \(AN + AC = 16\) cm. Tính \(AN\).
꧅ Xem lời giải