Bài 5.31 trang 124 SGK Toán 11 tập 1 - Kết nối tri thứcGiải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho a) (fleft( x right) = left{ {begin{array}{*{20}{c}}{frac{1}{x},;x ne 0}\{1;,;x = 0}end{array}} right.;;)gián đoạn tại (x = 0) b) (gleft( x right) = left{ {begin{array}{*{20}{c}}{1 + x;,;x < 1}\{2 - x;,x ge 1}end{array}} right.;;)gián đoạn tại (x = 1)
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho a) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{1}{x},\;x \ne 0}\\{1\;,\;x = 0}\end{array}} \right.\;\;\)gián đoạn tại \(x = 0\) b) \(g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 + x\;,\;x < 1}\\{2 - x\;,x \ge 1}\end{array}} \right.\;\;\)gián đoạn tại \(x = 1\)Video hướng dẫn giải Phương pháp giải - Xem chi tiết
Dùng định nghĩa liên tục của hàm số để giải thích
Lời giải chi tiết a) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{1}{x} = + \infty \)\(f\left( 0 \right) = 1\)Vì \(f\left( 0 \right) \ne \mathop {\lim }\limits_{x \to 0} f\left( x \right)\) suy ra hàm số gián đoạn tại \(x = 0\)b) \(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + x} \right) = 2\)\(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {2 - x} \right) = 1\)\(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right)\)Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\)Vậy hàm số gián đoạn tại \(x = 1\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |