ftw bet

Bài 4 trang 85 - Bài tập cuối chương 3 - SGK Toán 11 tập 1 - Chân trời sáng tạo

Hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{{x^2} + 2{rm{x}} + m}&{khi,,x ge 2}3&{khi,,x < 2}end{array}} right.) liên tục tại (x = 2) khi:

ꦕTổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo

Đề bài

Hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + 2{\rm{x}} + m}&{khi\,\,x \ge 2}\\3&{khi\,\,x < 2}\end{array}} \right.\) liên tục tại \(x = 2\) khi: A. \(m = 3\).                             B. \(m = 5\).                             C. \(m =  - 3\).                          D. \(m =  - 5\).

Phương pháp giải - Xem chi tiết

Bước 1: Tính \(f\left( {{x_0}} \right)\).

Bước 2:🍎 Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\).

Bước 3:🦋 Giải phương trình \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) để tìm \(m\).

Lời giải chi tiết

Trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\), \(f\left( x \right)\) là hàm đa thức nên liên tục trên từng khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).Ta có: \(f\left( 2 \right) = {2^2} + 2.2 + m = m + 8\)\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} + 2{\rm{x}} + m} \right) = {2^2} + 2.2 + m = m + 8\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( 3 \right) = 3\end{array}\)Để hàm số \(y = f\left( x \right)\) liên tục liên tục tại \(x = 2\) thì\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow m + 8 = 3 \Leftrightarrow m =  - 5\).Vậy với \(m =  - 5\) thì hàm số \(y = f\left( x \right)\) liên tục tại \(x = 2\).Chọn D.

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|