Bài 3.21 trang 81 SGK Toán 11 tập 1 - Cùng khám phá\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}}\) là
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}}\) là A. \(4.\) B. \( - 4.\) C. \( + \infty .\) D. \( - \infty .\) Phương pháp giải - Xem chi tiết
Đây là giới hạn một bên của hàm số
Tính giới hạn của tử số và giới hạn của mẫu số rồi áp dụng quy tắc tính giới hạn của một thương
\(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} = - \infty \), với mọi số thực \(a\).
Lời giải chi tiết Ta có \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {4x - 4} \right) = 4.2 - 4 = 4 > 0\)Với \(x < 2 \Rightarrow x - 2 < 0\) và \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 2} \right) = 0\) do đó \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}} = - \infty \)Đáp án D
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |