ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Bài 3.18 trang 80 SGK Toán 11 tập 1 - Cùng khám phá

Tìm các giới hạn

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Tìm các giới hạn

a) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{x - 2}}\) b) \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left| {x - 1} \right|}}{{{x^2} - 1}}\) c) \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{\sqrt {{x^2}} }}\)

Phương pháp giải - Xem chi tiết

a, c Đây là giới hạn một bên của hàm số Tính giới hạn của tử số và giới hạn của mẫu số rồi áp dụng quy tắc tính giới hạn của một thương \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} =  + \infty \) và \(\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} =  - \infty \), với mọi số thực \(a\). b, Đây là giới hạn một bên của hàm số Dạng vô định \(\frac{0}{0}\) nên ta phải thực hiện khử dạng vô định

Lời giải chi tiết

a, Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {2x + 1} \right) = 2.2 + 1 = 5 > 0\)Với \(x > 2\) thì \(x - 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} \right) = 0\) do đó \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{x - 2}} =  + \infty \)b,Với \(x < 1\) thì \(\left| {x - 1} \right| =  - \left( {x - 1} \right)\)Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left| {x - 1} \right|}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - \left( {x - 1} \right)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - \left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - 1}}{{x + 1}} =  - \frac{1}{2}\)c, Với \(x < 0 \Rightarrow \sqrt {{x^2}}  = \left| x \right| =  - x\)Ta có \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{\sqrt {{x^2}} }} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{ - x}}\)Ta có \(\mathop {\lim }\limits_{x \to {0^ - }} \left( {2x + 1} \right) = 1 > 0\)
Với \(x < 0\) thì \( - x > 0\) và \(\mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0\) dó đó \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{ - x}} =  + \infty \)Vậy \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{\sqrt {{x^2}} }} =  + \infty \)

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|𒊎{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🌸{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|🐓{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🍸{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|𓆉{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🐬{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|