ftw bet

Bài 3 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo

Xét tính liên tục của các hàm số sau:

🍸Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh
Quảng cáo

Đề bài

Xét tính liên tục của các hàm số sau: a) \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\); b) \(g\left( x \right) = \sqrt {9 - {x^2}} \);    c) \(h\left( x \right) = \cos x + \tan x\).

Phương pháp giải - Xem chi tiết

Để tính xét tính liên tục của hàm số, ta tìm những khoảng xác định của hàm số đó.

Lời giải chi tiết

a) ĐKXĐ: \({x^2} - 4 \ne 0 \Leftrightarrow x \ne  \pm 2\)Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ { \pm 2} \right\}\).Hàm số \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng \(\left( { - \infty ; - 2} \right),\left( { - 2;2} \right)\) và \(\left( {2; + \infty } \right)\).b) ĐKXĐ: \(9 - {x^2} \ge 0 \Leftrightarrow  - 3 \le x \le 3\)Vậy hàm số có TXĐ: \(D = \left[ { - 3;3} \right]\).Hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là hàm căn thức nên nó liên tục trên khoảng \(\left( { - 3;3} \right)\).Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \sqrt {9 - {x^2}}  = \sqrt {9 - {3^2}}  = 0 = f\left( 3 \right)\)\(\mathop {\lim }\limits_{x \to  - {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {3^ + }} \sqrt {9 - {x^2}}  = \sqrt {9 - {{\left( { - 3} \right)}^2}}  = 0 = f\left( { - 3} \right)\)Vậy hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là liên tục trên đoạn \(\left[ { - 3;3} \right]\).
c) ĐKXĐ: \(\sin x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).Hàm số \(h\left( x \right) = \cos x + \tan x\) là hàm lượng giác nên nó liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right),k \in \mathbb{Z}\).

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|